Self-consistent generalized Kohn-Sham local hybrid functionals of screened exchange: Combining local and range-separated hybridization.

We present local hybrid functionals that incorporate a position-dependent admixture of short-range (screened) nonlocal exact [Hartree-Fock-type (HF)] exchange. We test two limiting cases: screened local hybrids with no long-range HF exchange and long-range-corrected local hybrids with 100% long-range HF exchange. Long-range-corrected local hybrids provide the exact asymptotic exchange-correlation potential in finite systems, while screened local hybrids avoid the problems inherent to long-range HF exchange in metals and small-bandgap systems. We treat these functionals self-consistently using the nonlocal exchange potential constructed from Kohn-Sham orbital derivatives. Generalized Kohn-Sham calculations with screened and long-range-corrected local hybrids can provide accurate molecular thermochemistry and kinetics, comparable to existing local hybrids of full-range exchange. Generalized Kohn-Sham calculations with existing full-range local hybrids provide results consistent with previous non-self-consistent and "localized local hybrid" calculations. These new functionals appear to provide a promising extension of existing local and range-separated hybrids.

[1]  G. Scuseria,et al.  Assessment of a Middle-Range Hybrid Functional. , 2008, Journal of chemical theory and computation.

[2]  M. Ernzerhof,et al.  Generalized-gradient exchange-correlation hole obtained from a correlation factor ansatz. , 2008, The Journal of chemical physics.

[3]  M. Kaupp,et al.  What can we learn from the adiabatic connection formalism about local hybrid functionals? , 2008, The Journal of chemical physics.

[4]  Benjamin G. Janesko,et al.  Generalized gradient approximation model exchange holes for range-separated hybrids. , 2008, The Journal of chemical physics.

[5]  Benjamin G. Janesko,et al.  Parameterized local hybrid functionals from density-matrix similarity metrics. , 2008, The Journal of chemical physics.

[6]  G. Scuseria,et al.  Exact-exchange energy density in the gauge of a semilocal density functional approximation , 2007, 0710.3354.

[7]  G. Scuseria,et al.  The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. , 2007, The Journal of chemical physics.

[8]  M. Kaupp,et al.  Local hybrid functionals: an assessment for thermochemical kinetics. , 2007, The Journal of chemical physics.

[9]  Benjamin G. Janesko,et al.  Local hybrid functionals based on density matrix products. , 2007, The Journal of chemical physics.

[10]  E. Davidson,et al.  Self-consistent effective local potentials. , 2007, The Journal of chemical physics.

[11]  M. Kaupp,et al.  Nuclear shielding constants from localized local hybrid exchange-correlation potentials , 2007 .

[12]  M. Kaupp,et al.  Local hybrid exchange-correlation functionals based on the dimensionless density gradient , 2007 .

[13]  G. Scuseria,et al.  Tests of functionals for systems with fractional electron number. , 2007, The Journal of chemical physics.

[14]  E. Davidson,et al.  The effective local potential method: implementation for molecules and relation to approximate optimized effective potential techniques. , 2007, The Journal of chemical physics.

[15]  R. Baer,et al.  A well-tempered density functional theory of electrons in molecules. , 2007, Physical chemistry chemical physics : PCCP.

[16]  M. Kaupp,et al.  A thermochemically competitive local hybrid functional without gradient corrections. , 2007, The Journal of chemical physics.

[17]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[18]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[19]  Á. Rubio,et al.  Effect of spatial nonlocality on the density functional band gap , 2006 .

[20]  Viktor N Staroverov,et al.  Effective local potentials for orbital-dependent density functionals. , 2006, The Journal of chemical physics.

[21]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[22]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[23]  M. Kaupp,et al.  From local hybrid functionals to "localized local hybrid" potentials: formalism and thermochemical tests. , 2006, The Journal of chemical physics.

[24]  Viktor N Staroverov,et al.  Optimized effective potentials yielding Hartree-Fock energies and densities. , 2006, The Journal of chemical physics.

[25]  D. Truhlar,et al.  Erratum: Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods (Journal of Physical Chemistry A (2005) 109A (2015-2016)) , 2006 .

[26]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[27]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[28]  E. Baerends,et al.  Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals. , 2005, The Journal of chemical physics.

[29]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[30]  Donald G Truhlar,et al.  Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. , 2005, The journal of physical chemistry. A.

[31]  A. Becke Real-space post-Hartree-Fock correlation models. , 2005, The Journal of chemical physics.

[32]  A. Savin,et al.  Short-range exchange and correlation energy density functionals: beyond the local-density approximation. , 2004, The Journal of chemical physics.

[33]  A. Savin,et al.  Short-Range Exchange-Correlation Energy of a Uniform Electron Gas with Modified Electron-Electron Interaction , 2004, cond-mat/0611559.

[34]  Jianmin Tao,et al.  Erratum: “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes” [J. Chem. Phys. 119, 12129 (2003)] , 2004 .

[35]  A. Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004, physics/0410062.

[36]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[37]  P. Gori-Giorgi,et al.  Local density functional for the short-range part of the electron-electron interaction , 2004, cond-mat/0406375.

[38]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[39]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[40]  Donald G. Truhlar,et al.  Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics , 2004 .

[41]  M. Kaupp,et al.  Construction of local hybrid exchange-correlation potentials and their evaluation for nuclear shielding constants , 2004 .

[42]  D. Truhlar,et al.  Erratum: Small representative benchmarks for thermochemical calculations (J. Phys. Chem. A (2003) 107A, (8997)) , 2004 .

[43]  W. Hieringer,et al.  Density-functional calculations of NMR shielding constants using the localized Hartree–Fock method , 2004 .

[44]  A. M. Teale,et al.  Exchange representations in Kohn–Sham NMR shielding calculations , 2004 .

[45]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[46]  M. Levy,et al.  Connections between ground-state energies from optimized-effective potential exchange-only and Hartree-Fock methods , 2003 .

[47]  Donald G. Truhlar,et al.  Small Representative Benchmarks for Thermochemical Calculations , 2003 .

[48]  A. Becke A real-space model of nondynamical correlation , 2003 .

[49]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[50]  Gustavo E. Scuseria,et al.  Local hybrid functionals , 2003 .

[51]  Qin Wu,et al.  Direct method for optimized effective potentials in density-functional theory. , 2002, Physical review letters.

[52]  D. Cremer Density functional theory: coverage of dynamic and non-dynamic electron correlation effects , 2001 .

[53]  A. Görling,et al.  Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules , 2001 .

[54]  E. J. Baerends,et al.  Orbital structure of the Kohn-Sham exchange potential and exchange kernel and the field-counteracting potential for molecules in an electric field , 2001 .

[55]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[56]  L. Curtiss,et al.  Gaussian-3X (G3X) theory : use of improved geometries, zero-point energies, and Hartree-Fock basis sets. , 2001 .

[57]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[58]  Axel D. Becke,et al.  Simulation of delocalized exchange by local density functionals , 2000 .

[59]  Andreas Görling,et al.  New KS Method for Molecules Based on an Exchange Charge Density Generating the Exact Local KS Exchange Potential , 1999 .

[60]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[61]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[62]  So Hirata,et al.  Exact exchange treatment for molecules in finite-basis-set kohn-sham theory , 1999 .

[63]  Peter T. Cummings,et al.  Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics , 1999 .

[64]  Weitao Yang Generalized adiabatic connection in density functional theory , 1998 .

[65]  John P. Perdew,et al.  Generalized gradient approximation to the angle- and system-averaged exchange hole , 1998 .

[66]  K. Burke,et al.  Unambiguous exchange-correlation energy density , 1998 .

[67]  E. Baerends,et al.  Exchange and correlation energy in density functional theory. Comparison of accurate DFT quantities with traditional Hartree-Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2. , 1997 .

[68]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[69]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[72]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[73]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[74]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[75]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[76]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[77]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[78]  Benny G. Johnson,et al.  Kohn—Sham density-functional theory within a finite basis set , 1992 .

[79]  Krieger,et al.  Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[80]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[81]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[82]  Krieger,et al.  Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[83]  Kobayashi,et al.  Bond-energy calculations of Cu2, Ag2, and CuAg with the generalized gradient approximation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[84]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[85]  L. Kleinman,et al.  Good semiconductor band gaps with a modified local-density approximation. , 1990, Physical review. B, Condensed matter.

[86]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[87]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[88]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[89]  Delhalle,et al.  Direct-space analysis of the Hartree-Fock energy bands and density of states for metallic extended systems. , 1987, Physical review. B, Condensed matter.

[90]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[91]  H. Monkhorst,et al.  Hartree-Fock density of states for extended systems , 1979 .

[92]  J. D. Talman,et al.  Optimized effective atomic central potential , 1976 .