Salt Marsh and Fringing Oyster Reef Transgression in a Shallow Temperate Estuary: Implications for Restoration, Conservation and Blue Carbon

[1]  D. Eggleston,et al.  Wave Exposure Structures Oyster Distribution on Natural Intertidal Reefs, But Not on Hardened Shorelines , 2017, Estuaries and Coasts.

[2]  S. Powers,et al.  Do restored oyster reefs benefit seagrasses? An experimental study in the Northern Gulf of Mexico , 2016 .

[3]  J. Cebrian,et al.  A hybrid shoreline stabilization technique: Impact of modified intertidal reefs on marsh expansion and nekton habitat in the northern Gulf of Mexico , 2016 .

[4]  Sergio Fagherazzi,et al.  Overestimation of marsh vulnerability to sea level rise , 2016 .

[5]  Johanna H. Rosman,et al.  A Model for Understanding the Effects of Sediment Dynamics on Oyster Reef Development , 2016, Estuaries and Coasts.

[6]  P. Herman,et al.  Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: reply to Baggett et al. , 2016 .

[7]  Jenny L. Davis,et al.  Living Shorelines: Coastal Resilience with a Blue Carbon Benefit , 2015, PloS one.

[8]  Edwin D. Grosholz,et al.  Guidelines for evaluating performance of oyster habitat restoration , 2015 .

[9]  Jonathan H. Grabowski,et al.  Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise , 2015, Scientific Reports.

[10]  J. Ridge,et al.  Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold , 2015 .

[11]  R. Grizzle,et al.  A multiple habitat restoration strategy in a semi-enclosed Florida embayment, combining hydrologic restoration, mangrove propagule plantings and oyster substrate additions , 2015 .

[12]  R. Lipcius,et al.  Lethal and sublethal effects of sediment burial on the eastern oyster Crassostrea virginica , 2015 .

[13]  John M. Carroll,et al.  A field test of the effects of mesopredators and landscape setting on juvenile oyster, Crassostrea virginica, consumption on intertidal reefs , 2015 .

[14]  Melinda J. Donnelly,et al.  Effects of Sea Level Rise on the Intertidal Oyster Crassostrea Virginica by Field Experiments , 2014 .

[15]  J. Bruno,et al.  Marshes with and without sills protect estuarine shorelines from erosion better than bulkheads during a Category 1 hurricane , 2014 .

[16]  N. Lindquist,et al.  Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration , 2014 .

[17]  Matthias Kudella,et al.  Wave attenuation over coastal salt marshes under storm surge conditions , 2014 .

[18]  J. Grabowski,et al.  Oyster reefs can outpace sea-level rise , 2014 .

[19]  Bregje K. van Wesenbeeck,et al.  Coastal adaptation with ecological engineering , 2013 .

[20]  Patricia L. Wiberg,et al.  Marsh Collapse Does Not Require Sea Level Rise , 2013 .

[21]  P. Hensel,et al.  Ecogeomorphology of Spartina Patens‐dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance , 2013 .

[22]  Jonathan H. Grabowski,et al.  Historical ecology with real numbers: past and present extent and biomass of an imperilled estuarine habitat , 2012, Proceedings of the Royal Society B: Biological Sciences.

[23]  Jeffrey P. Walker,et al.  Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products , 2012 .

[24]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[25]  Craig M. Lee,et al.  Impact of Wind-Driven Mixing in the Arctic Ocean , 2011 .

[26]  Chris J. Kennedy,et al.  The value of estuarine and coastal ecosystem services , 2011 .

[27]  E. Barbier,et al.  The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm , 2011 .

[28]  L. Shaw,et al.  Bistability in a differential equation model of oyster reef height and sediment accumulation. , 2011, Journal of theoretical biology.

[29]  Bregje K. van Wesenbeeck,et al.  How ecological engineering can serve in coastal protection , 2011 .

[30]  H. Lenihan,et al.  Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management , 2011 .

[31]  S. Temmerman,et al.  Limits on the adaptability of coastal marshes to rising sea level , 2010 .

[32]  J. Gottsmann,et al.  Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills Volcano, Montserrat, West Indies , 2010 .

[33]  B. McKee,et al.  Impact of land-use change and hard structures on the evolution of fringing marsh shorelines , 2010 .

[34]  Giulio Mariotti,et al.  A numerical model for the coupled long‐term evolution of salt marshes and tidal flats , 2010 .

[35]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[36]  R. Lipcius,et al.  Unprecedented Restoration of a Native Oyster Metapopulation , 2009, Science.

[37]  Mark A. Green,et al.  Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves , 2009 .

[38]  M. B. Machmuller,et al.  Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services , 2009 .

[39]  D. Bushek,et al.  Intertidal oyster reefs can persist and function in a temperate North American Atlantic estuary , 2008 .

[40]  Robert J. Orth,et al.  The Charisma of Coastal Ecosystems: Addressing the Imbalance , 2008 .

[41]  R. Mann,et al.  WHY OYSTER RESTORATION GOALS IN THE CHESAPEAKE BAY ARE NOT AND PROBABLY CANNOT BE ACHIEVED , 2007 .

[42]  S. Ford,et al.  OYSTER GROWTH ANALYSIS: A COMPARISON OF METHODS , 2007 .

[43]  M. Posey,et al.  Ecosystem services related to oyster restoration , 2007 .

[44]  Julian D. Olden,et al.  Incorporating positive interactions in aquatic restoration and conservation , 2007 .

[45]  J. Klinck,et al.  IS OYSTER SHELL A SUSTAINABLE ESTUARINE RESOURCE? , 2007 .

[46]  E. Powell,et al.  How long does oyster shell last on an oyster reef , 2006 .

[47]  L. Leonard,et al.  The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies , 2006 .

[48]  H. Lenihan,et al.  Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas , 2006, Science.

[49]  J. Grabowski,et al.  HOW HABITAT SETTING INFLUENCES RESTORED OYSTER REEF COMMUNITIES , 2005 .

[50]  Yang Wang,et al.  Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements , 2004 .

[51]  Jack J. Middelburg,et al.  Major role of marine vegetation on the oceanic carbon cycle , 2004 .

[52]  P. Boyd,et al.  Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: Contribution of atmospheric and oceanic iron supply , 2004 .

[53]  Charles H. Peterson,et al.  Conceptual progress towards predicting quantitative ecosystem benefits of ecological restorations , 2003 .

[54]  D. Cahoon,et al.  Global carbon sequestration in tidal, saline wetland soils , 2003 .

[55]  P. V. Sundareshwar,et al.  RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL , 2002 .

[56]  D. Eggleston,et al.  The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates , 2001 .

[57]  M. Kennish Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts , 2001 .

[58]  Robert J. Nicholls,et al.  Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses , 1999 .

[59]  H. Lenihan PHYSICAL-BIOLOGICAL COUPLING ON OYSTER REEFS: HOW HABITAT STRUCTURE INFLUENCES INDIVIDUAL PERFORMANCE , 1999 .

[60]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[61]  E. Irlandi,et al.  Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish , 1997, Oecologia.

[62]  Charles H. Peterson,et al.  Does flow speed also have a direct effect on growth of active suspension‐feeders: An experimental test on oysters , 1996 .

[63]  D. Reed The response of coastal marshes to sea‐level rise: Survival or submergence? , 1995 .

[64]  R. E. Turner,et al.  The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh , 1994 .

[65]  R. Grizzle,et al.  Growth responses of suspension-feeding bivalve molluscs to changes in water flow: differences between siphonate and nonsiphonate taxa , 1992 .

[66]  M. L. Reaka-Kudla,et al.  Coral reefs: sources or sinks of atmospheric CO2? , 1992, Coral Reefs.

[67]  E. D. Seneca,et al.  Loss on ignition and kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion , 1991 .

[68]  W. Berelson,et al.  Correlations between Holocene flood tidal delta and barrier island inlet fill sequences: Back Sound‐Shackleford Banks, North Carolina , 1985 .

[69]  Paul L. Knutson,et al.  Wave damping inSpartinaalterniflora marshes , 1982, Wetlands.

[70]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[71]  Linwood Pendleton,et al.  Green payments for blue carbon: economic incentives for protecting threatened coastal habitats. , 2011 .

[72]  A. Deaton,et al.  Developing alternative shoreline armoring strategies: the living shoreline approach in North Carolina , 2010 .

[73]  Charles H. Peterson,et al.  Restoring oyster reefs to recover ecosystem services , 2007 .

[74]  J. Hay,et al.  Coastal systems and low-lying areas , 2007 .

[75]  David B. Lewis,et al.  Spatially heterogeneous refugia and predation risk in intertidal salt marshes , 2002 .

[76]  R. E. Turner,et al.  The Value of Salt Marsh Edge vs , 1994 .

[77]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[78]  C. Mackenzie Biotic potential and environmental resistance in the American oyster (Crassostrea virginica) in Long Island Sound , 1981 .