Compensating internal temperature effects in uncooled microbolometer-based infrared cameras

In this paper the effects of the internal temperature on the response of uncooled microbolometer cameras have been studied. To this end, different temperature profiles steering the internal temperature of the cameras have been generated, and black-body radiator sources have been employed as time and temperature constant radiation inputs. The analysis conducted over the empirical data has shown the existence of statistical correlation between camera's internal temperature and the fluctuations in the read-out data. Thus, when measurements of the internal temperature are available, effective methods for compensating the fluctuations in the read-out data can be developed. This claim has been tested by developing a signal processing scheme, based on a polynomial model, to compensate for the output of infrared cameras equipped with amorphous-Silicon and Vanadium-Oxide microbolometers.