Biosynthesis of long-chain polyunsaturated fatty acids in the African catfish Clarias gariepinus: Molecular cloning and functional characterisation of fatty acyl desaturase (fads2) and elongase (elovl2) cDNAs7

[1]  Ó. Monroig,et al.  Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. , 2016, Progress in lipid research.

[2]  Ó. Monroig,et al.  Isolation and Functional Characterisation of a fads2 in Rainbow Trout (Oncorhynchus mykiss) with Δ5 Desaturase Activity , 2016, PloS one.

[3]  B. Venkatesh,et al.  Evolutionary functional elaboration of the Elovl2/5 gene family in chordates , 2016, Scientific Reports.

[4]  D. Tocher Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective , 2015 .

[5]  D. Tocher,et al.  Lipids and Fatty Acids , 2015 .

[6]  D. Tocher,et al.  Docosahexaenoic acid biosynthesis via fatty acyl elongase and Δ4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. , 2015, Biochimica et biophysica acta.

[7]  A. Jaya-Ram,et al.  The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata). , 2015, Biochimica et biophysica acta.

[8]  M. James,et al.  Rainbow trout (Oncorhynchus mykiss) Elov15 and Elov12 differ in selectivity for elongation of omega-3 docosapentaenoic acid. , 2014, Biochimica et biophysica acta.

[9]  Ó. Monroig,et al.  Diversification of substrate specificities in teleostei Fads2: characterization of Δ4 and Δ6Δ5 desaturases of Chirostoma estor[S] , 2014, Journal of Lipid Research.

[10]  Ó. Monroig,et al.  Functional characterisation of a Fads2 fatty acyl desaturase with Δ6/Δ8 activity and an Elovl5 with C16, C18 and C20 elongase activity in the anadromous teleost meagre (Argyrosomus regius) , 2013 .

[11]  S. Boonanuntanasarn,et al.  Characterization of fatty acid delta-6 desaturase gene in Nile tilapia and heterogenous expression in Saccharomyces cerevisiae. , 2013, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[12]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[13]  D. Tocher,et al.  Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. , 2012, Biochimica et biophysica acta.

[14]  Ó. Monroig,et al.  Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates , 2012, PloS one.

[15]  Ó. Monroig,et al.  Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: high activity in delta-6 desaturases of marine species. , 2011, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[16]  Ester Santigosa,et al.  Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: A review , 2011 .

[17]  Ó. Monroig,et al.  Long-chain polyunsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their biosynthesis , 2011 .

[18]  Ó. Monroig,et al.  Vertebrate fatty acyl desaturase with Δ4 activity , 2010, Proceedings of the National Academy of Sciences.

[19]  Ó. Monroig,et al.  Multiple genes for functional 6 fatty acyl desaturases (Fad) in Atlantic salmon (Salmo salar L.): gene and cDNA characterization, functional expression, tissue distribution and nutritional regulation. , 2010, Biochimica et biophysica acta.

[20]  K. Wan,et al.  Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer , 2010, Fish Physiology and Biochemistry.

[21]  D. Tocher Fatty acid requirements in ontogeny of marine and freshwater fish , 2010 .

[22]  Pascal G. P. Martin,et al.  The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. , 2010, Progress in lipid research.

[23]  A. O. Sotolu Feed Utilization and Biochemical Characteristics of Clarias gariepinus (Burchell, 1822) Fingerlings Fed Diets Containing Fish Oil and Vegetable Oils as Total Replacements , 2010 .

[24]  D. Tocher,et al.  Molecular and functional characterization and expression analysis of a Δ6 fatty acyl desaturase cDNA of European Sea Bass (Dicentrarchus labrax L.). , 2009 .

[25]  Ó. Monroig,et al.  Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. , 2009, Biochimica et biophysica acta.

[26]  R. Romvári,et al.  Effects of dietary vegetable oil supplementation on fillet quality traits, chemical and fatty acid composition of African catfish (Clarias Gariepinus) , 2009 .

[27]  K. Kothapalli,et al.  An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. , 2009, Journal of lipid research.

[28]  Ó. Monroig,et al.  Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterisation of cDNAs of fatty acyl Δ6 desaturase and elovl5 elongase of cobia (Rachycentron canadum) , 2009 .

[29]  Ó. Monroig,et al.  Highly Unsaturated Fatty Acid Synthesis in Atlantic Salmon: Characterization of ELOVL5- and ELOVL2-like Elongases , 2009, Marine Biotechnology.

[30]  D. Tocher,et al.  Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions , 2009 .

[31]  D. Tocher,et al.  Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. , 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[32]  J. G. Bell,et al.  Highly unsaturated fatty acid synthesis in vertebrates: New insights with the cloning and characterization of a Δ6 desaturase of Atlantic salmon , 2005, Lipids.

[33]  T. Okada [Long-chain polyunsaturated fatty acid]. , 2004, Nihon rinsho. Japanese journal of clinical medicine.

[34]  D. Tocher,et al.  Molecular Cloning and Functional Characterization of Fatty Acyl Desaturase and Elongase cDNAs Involved in the Production of Eicosapentaenoic and Docosahexaenoic Acids from α-Linolenic Acid in Atlantic Salmon (Salmo salar) , 2004, Marine Biotechnology.

[35]  Manabu T. Nakamura,et al.  STRUCTURE, FUNCTION, AND DIETARY REGULATION OF Δ6, Δ5, AND Δ9 DESATURASES , 2004 .

[36]  D. Tocher Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish , 2003 .

[37]  P. Boey,et al.  Dietary lipid and palm oil source affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish, Clarias gariepinus , 2003 .

[38]  D. Tocher,et al.  Biochemical and molecular studies of the polyunsaturated fatty acid desaturationpathway in fish , 2003 .

[39]  C. J. Lewis,et al.  Identification and expression of mammalian long-chain PUFA elongation enzymes , 2002, Lipids.

[40]  J. G. Bell,et al.  Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. , 2002, The Journal of nutrition.

[41]  D. Tocher,et al.  A vertebrate fatty acid desaturase with Δ5 and Δ6 activities , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Sprecher Metabolism of highly unsaturated n-3 and n-6 fatty acids. , 2000, Biochimica et biophysica acta.

[43]  C. Agostoni,et al.  Long‐chain polyunsaturated fatty acids in human milk , 1999, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[44]  S. O. Hung,et al.  Lipids and Fatty Acids , 1998 .

[45]  S. Davies,et al.  Increased production of docosahexaenoic acid (22: 6 n‐3, DHA) in catfish nutritionally stressed by the feeding of oxidized oils and the modulatory effect of dietary α‐tocopheryl acetate , 1996 .

[46]  R. J. Henderson,et al.  The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. , 1996, Biochimica et biophysica acta.

[47]  J. Prinsloo,et al.  THE INFLUENCE OF DIFFERENT DIETARY LIPIDS ON THE GROWTH AND BODY-COMPOSITION OF THE AFRICAN SHARPTOOTH CATFISH, CLARIAS-GARIEPINUS (BURCHELL) , 1995 .

[48]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[49]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.