Global finite-time synchronization of a class of the non-autonomous chaotic systems

This paper investigates the global finite-time synchronization of a class of the second-order nonautonomous chaotic systems via a master–slave coupling. A continuous generalized linear state-error feedback controller with simple structure is introduced into the synchronization scheme. Some easily implemented algebraic criteria for achieving the global finite-time synchronization are proven and then optimized for the purposes of improving their sharpness. The optimized criteria are applied to a practical master–slave synchronization scheme for the single-machine-infinite-bus (SMIB) systems, obtaining the precise corresponding synchronization conditions. Several numerical examples are provided to illustrate the effectiveness of the new synchronization criteria.

[1]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[2]  Xiaofeng Wu,et al.  The sufficient criteria for global synchronization of chaotic power systems under linear state-error feedback control , 2011 .

[3]  Leon O. Chua,et al.  Practical stability of impulsive Synchronization between Two nonautonomous Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[4]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[5]  Wei Zhang,et al.  Finite-time chaos synchronization of unified chaotic system with uncertain parameters , 2009 .

[6]  Z. Ge,et al.  Chaos synchronization of a horizontal platform system , 2003 .

[7]  Wei Zhang,et al.  Finite-time synchronization of uncertain unified chaotic systems based on CLF☆ , 2009 .

[8]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[9]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[10]  Wei Zhang,et al.  Finite-time chaos control via nonsingular terminal sliding mode control , 2009 .

[11]  Guanrong Chen,et al.  Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control , 2007, 0807.2107.

[12]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[13]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[14]  E. M. Shahverdiev,et al.  Chaos synchronization in some power systems , 2008 .

[15]  J. Suykens,et al.  Absolute stability theory and master-slave synchronization , 1997 .

[16]  Gang Feng,et al.  Robust synchronization of chaotic systems subject to parameter uncertainties. , 2009, Chaos.

[17]  Johan A. K. Suykens,et al.  Chaotic systems synchronization , 2003 .

[18]  B. Koch,et al.  Chaotic behaviour of a parametrically excited damped pendulum , 1981 .

[19]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[20]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[21]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[22]  H H Abel,et al.  Synchronization in the human cardiorespiratory system. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Jason Jianjun Gu,et al.  Global Finite-Time Observers for Lipschitz Nonlinear Systems , 2011, IEEE Transactions on Automatic Control.

[24]  Wilfrid Perruquetti,et al.  Finite time stability conditions for non-autonomous continuous systems , 2008, Int. J. Control.

[25]  Hsien-Keng Chen,et al.  Dynamic analysis, controlling chaos and chaotification of a SMIB power system , 2005 .

[26]  Wei Xu,et al.  Global synchronization of two parametrically excited systems using active control , 2006 .

[27]  Jianping Cai,et al.  Synchronization criteria for non-autonomous chaotic systems via sinusoidal state error feedback control , 2007 .

[28]  Yong Xu,et al.  Chaos control by harmonic excitation with proper random phase , 2004 .

[29]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[30]  M. Lakshmanan,et al.  Bifurcation and chaos in the double-well Duffing–van der Pol oscillator: Numerical and analytical studies , 1997, chao-dyn/9709013.

[31]  Yu-Ping Tian,et al.  Finite time synchronization of chaotic systems , 2003 .

[32]  P. Colet,et al.  Criteria for synchronization of coupled chaotic external-cavity semiconductor lasers , 2002, IEEE Photonics Technology Letters.

[33]  Lan Chen,et al.  Study on chaos synchronization in the Belousov–Zhabotinsky chemical system , 2003 .

[34]  Lucas Illing Digital Communication using Chaos and Nonlinear Dynamics , 2006 .

[35]  Jianping Cai,et al.  Robust synchronization of chaotic horizontal platform systems with phase difference , 2007 .

[36]  Edward Ott,et al.  Using synchronization of chaos to identify the dynamics of unknown systems. , 2009, Chaos.