On the Validity of the Top of the Barrier Quantum Transport Model for Ballistic Nanowire MOSFETs

This work focuses on the determination of the valid device domain for the use of the Top of the barrier (ToB) model to simulate quantum transport in nanowire MOSFETs in the ballistic regime. The presence of a proper Source/Drain barrier in the device is an important criterion for the applicability of the model. Long channel devices can be accurately modeled under low and high drain bias with DIBL adjustment. Keywords-component; nanowires; top of the barrier; MOSFET; ballistic transport model; DIBL; tunneling current; top-of-the- barrier; subthreshold- slope; Tight-Binding;Short channel effects .

[1]  S.C. Rustagi,et al.  Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance , 2006, 2006 International Electron Devices Meeting.

[2]  Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors , 2008 .

[3]  M. Luisier,et al.  From NEMO1D and NEMO3D to OMEN: Moving towards atomistic 3-D quantum transport in nano-scale semiconductors , 2008, 2008 IEEE International Electron Devices Meeting.

[4]  Gerhard Klimeck,et al.  Band Structure Lab , 2006 .

[5]  G. Klimeck,et al.  Atomistic Full-Band Design Study of InAs Band-to-Band Tunneling Field-Effect Transistors , 2009, IEEE Electron Device Letters.

[6]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[7]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[8]  Gerhard Klimeck,et al.  Design space for low sensitivity to size variations in [110] PMOS nanowire devices: the implications of anisotropy in the quantization mass. , 2009, Nano letters.

[9]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[10]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .

[11]  B. Ryu,et al.  Observation of Single Electron Tunneling and Ballistic Transport in Twin Silicon Nanowire MOSFETs (TSNWFETs) Fabricated by Top-Down CMOS Process , 2006, 2006 International Electron Devices Meeting.

[12]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Hole Transport , 2008, IEEE Transactions on Nanotechnology.

[13]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.

[14]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[15]  Gerhard Klimeck,et al.  A multi-level parallel simulation approach to electron transport in nano-scale transistors , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[16]  M. Luisier,et al.  OMEN an Atomistic and Full-Band Quantum Transport Simulator for post-CMOS Nanodevices , 2008, 2008 8th IEEE Conference on Nanotechnology.

[17]  Valley degeneracies in (111) silicon quantum wells , 2008, 0812.3681.

[18]  Masaharu Kobayashi,et al.  Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors , 2008 .

[19]  H. Ryu,et al.  Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data , 2008, IEEE Transactions on Nanotechnology.

[20]  Wolfgang Fichtner,et al.  Full-Band Atomistic Study of Source-To-Drain Tunneling in Si Nanowire Transistors , 2007 .