Separation and characterization of amines from individual atrial gland vesicles of Aplysia californica.

Several amine-containing components of individual vesicles from the atrial gland of Aplysia californica were identified with capillary electrophoresis (CE). On-line derivatization with naphthalene-2,3-dicarboxaldehyde was performed, and the derivatized amine-containing components were detected with laser-induced fluorescence (LIF). Amino acids, including taurine, that had not been determined previously in atrial gland vesicles were observed by using CE-LIF, and their identities were confirmed with CE, HPLC, NMR, and electrospray ionization mass spectrometry. The finding that taurine is packaged and stored into secretory vesicles supports the hypothesis that taurine may exhibit neuromodulatory activity. The bioactive peptides, well-known to be in atrial gland vesicles, were detected in lysed vesicle samples fractionated with HPLC and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. These peptides were also observed in single-vesicle runs with CE-LIF. The atrial gland vesicles (ranging from 0.5 to 2 microns diameter and 65 aL to 4 fL volume, respectively) studied in this work represent the smallest biological entities to be analyzed chemically on an individual basis.