Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis

Abstract A three-dimensional, finite element, micro-mechanical model has been developed to predict the behaviour of unidirectional metal matrix composites subjected to off-axis loading. The model consists of a unit cell, representing a quarter fibre surrounded by matrix as a repeating element in a square array of fibres. Boundary conditions have been developed to allow the simultaneous application of axial shear, normal and transverse loading and thermal residual stress. The model includes the important effects of de-bonding of the interface between fibre and matrix, friction between fibre and matrix and the presence of thermal residual stress. The results of the model have been compared with experimental stress–strain data for a SiC/Ti composite system loaded at various off-axis angles between 0° and 90°. There is good agreement between the model and experiment for Young’s modulus, elastic limit and ultimate strength. It is demonstrated that for a model to predict correctly the composite strength when the fibre is perfectly de-bonded from the matrix, friction must be introduced at the interface.

[1]  Jacob Aboudi,et al.  Micromechanical analysis of the strength of unidirectional fiber composites , 1988 .

[2]  David J. Smith,et al.  Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites , 2000 .

[3]  H. Garmestani,et al.  Micromechanical Modeling of Process-Induced Residual Stresses in Ti-24Al-11Nb/SCS-6 Composite , 1994 .

[4]  R. Pipes,et al.  On the Off-Axis Strength Test for Anisotropic Materials1 , 1973 .

[5]  Nimmer Rp Fiber-matrix interface effects in the presence of thermally induced residual stresses , 1990 .

[6]  M. Thomas,et al.  EFFECT OF MATRIX ALLOY ON LONGITUDINAL TENSILE BEHAVIOUR OF FIBRE REINFORCED TITANIUM MATRIX COMPOSITES , 1997 .

[7]  G. J. Davies,et al.  THE PRINCIPLES OF THE FIBRE REINFORCEMENT OF METALS , 1965 .

[8]  Raymond L. Foye,et al.  Theoretical Post-Yielding Behavior of Composite Laminates Part II-Inelastic Macromechanics , 1973 .

[9]  G. Cooper Orientation effects in fibre-reinforced metals , 1966 .

[10]  Stephen W. Tsai,et al.  Anisotropic strength of composites , 1965 .

[11]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[12]  T. Liu,et al.  On the mechanical behaviour of fibre-reinforced crystalline materials , 1961 .

[13]  Marek-Jerzy Pindera,et al.  Shear characterization of unidirectional composites with the off-axis tension test , 1986 .

[14]  F. Zok,et al.  Limit stress conditions for weakly bonded fiber composites subject to transverse biaxial tensile loading , 1998 .

[15]  M. Wisnom,et al.  Factors controlling the transverse tensile properties of unidirectional SiC/Ti-6AI-4V☆ , 1995 .

[16]  M. Wisnom Factors Affecting the Transverse Tensile Strength of Unidirectional Continuous Silicon Carbide Fibre Reinforced 6061 Aluminum , 1990 .

[17]  P. Jackson,et al.  The effect of fibre orientation on the tensile strength of fibre-reinforced metals , 1966 .

[18]  P. Wright,et al.  Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites , 1991 .

[19]  C. C. Chamis,et al.  Ten-deg off-axis test for shear properties in fiber composites , 1977 .

[20]  Donald F. Adams,et al.  Transverse Normal Loading of a Unidirectional Composite , 1967 .

[21]  C. Sun,et al.  Prediction of composite properties from a representative volume element , 1996 .

[22]  A. Ureña,et al.  Diffusion bonding of Ti-6Al-4V alloy at low temperature: metallurgical aspects , 1992 .

[23]  M. Pindera Shear testing of fiber reinforced metal matrix composites , 1989 .

[24]  P. Withers,et al.  An introduction to metal matrix composites , 1993 .

[25]  Alton L. Highsmith,et al.  Mechanical Characterization of Unnotched SCS 6 /Ti-15-3 Metal Matrix Composites at Room Temperature , 1990 .

[26]  D. Adams,et al.  Combined loading micromechanical analysis of a unidirectional composite , 1984 .

[27]  Donald F. Adams,et al.  Longitudinal Shear Loading of a Unidirectional Composite , 1967 .

[28]  S. Schmauder,et al.  TRANSVERSE STRENGTH OF METAL MATRIX COMPOSITES REINFORCED WITH STRONGLY BONDED CONTINUOUS FIBERS IN REGULAR ARRANGEMENTS , 1994 .

[29]  R. Pailler,et al.  Modern boron and SiC CVD filaments: a comparative study , 1988 .

[30]  M. Pavier,et al.  Micromechanical Modelling Of Metal Matrix Composites Subjected To Combined Thermal And Shear Loading , 1998 .

[31]  M. Wisnom,et al.  Finite element micromechanical modelling of a unidirectional composite subjected to axial shear loading , 1994 .

[32]  N. J. Pagano,et al.  Influence of End Constraint in the Testing of Anisotropic Bodies , 1968 .

[33]  Ke Zhang,et al.  Inelastic Response of Off-Axis MMC Lamina , 1998 .

[34]  T. Clyne,et al.  The axial compressive failure of titanium reinforced with silicon carbide monofilaments , 1999 .

[35]  Jacob Aboudi,et al.  Micromechanical Analysis of Composites by the Method of Cells , 1989 .

[36]  Mahmood Husein Datoo,et al.  Mechanics of Fibrous Composites , 1991 .

[37]  M. Pindera,et al.  A Methodology for Accurate Shear Characterization of Unidirectional Composites , 1987 .

[38]  Donald F. Adams,et al.  Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading , 1984 .

[39]  R. Rizzo More on the Influence of End Constraints on Off-Axis Tensile Tests , 1969 .

[40]  A. Evans,et al.  The anisotropic mechanical properties of a Ti matrix composite reinforced with SiC fibers , 1991 .