A review on solar cells from Si-single crystals to porous materials and quantum dots

Graphical abstract

[1]  D. Bellet,et al.  Efficient Dye-Sensitized Solar Cells Made from ZnO Nanostructure Composites , 2012 .

[2]  Guneet Bedi,et al.  Quantum dot solar cells , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[3]  Q. Shen,et al.  Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties. , 2012, The journal of physical chemistry letters.

[4]  Tomas Edvinsson,et al.  Influence of π-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells , 2007 .

[5]  Yan Cui,et al.  Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid , 2007 .

[6]  Sol Wieder An Introduction to Solar Energy for Scientists and Engineers , 1982 .

[7]  W. Badawy,et al.  Antimony-incorporated TiO2 thin films: preparation and optical and electrical characteristics , 1991 .

[8]  E. J. Mchenry,et al.  Fluorescent window for liquid junction solar cells , 1980 .

[9]  Preparation and properties of Si/SnO2 heterojunctions , 1983 .

[10]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[11]  Silvia Colodrero,et al.  Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells , 2009 .

[12]  Porous Silicon Modified Photovoltaic Junctions: An Approach to High‐Efficiency Solar Cells , 2007 .

[13]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[14]  Tomas Edvinsson,et al.  Improved Photon-to-Current Conversion Efficiency with a Nanoporous p-Type NiO Electrode by the Use of a Sensitizer-Acceptor Dyad , 2008 .

[15]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[16]  J. Granata,et al.  Losses due to polycrystallinity in thin-film solar cells , 1998 .

[17]  W. Xu,et al.  New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells , 2008 .

[18]  W. Badawy Preparation and characterization of TiO2/Sb thin films for solar energy applications , 1993 .

[19]  W. Badawy,et al.  The role of the interfacial SiOx layer in SnO2/n-Si photocells , 1984 .

[20]  Qing Wang,et al.  Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells , 2007 .

[21]  W. Badawy Improvement of n-Si/SnO2/electrolyte photoelectrochemical cells by Ru deposits , 1990 .

[22]  W. Badawy Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells , 2008 .

[23]  T. Umeyama,et al.  Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion , 2009 .

[24]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[25]  K. Ramanathan,et al.  CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors , 1998 .

[26]  Juan Bisquert,et al.  Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids , 2007 .

[27]  D. Acosta,et al.  Physical properties of CdS and CdS : In thin films obtained by chemical spray over different substrates , 1998 .

[28]  Q. Qiao,et al.  Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells , 2013 .

[29]  A. Hermann Polycrystalline thin-film solar cells – A review , 1998 .

[30]  Giorgio Sberveglieri,et al.  Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[31]  Y. Sung,et al.  Surface Modification of Stretched TiO2 Nanotubes for Solid-State Dye-Sensitized Solar Cells , 2007 .

[32]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[33]  Takayuki Kitamura,et al.  Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. , 2007, The journal of physical chemistry. B.

[34]  Peng Wang,et al.  Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine , 2009 .

[35]  J. Granata,et al.  Prospects for in situ junction formation in CuInSe2 based solar cells , 1998 .

[36]  S. Gamboa,et al.  Photovoltaic structures based on polymer/semiconductor junctions , 1998 .

[37]  S. Krause,et al.  The electrode properties of polycrystalline SnO2 containing up to 10% Sb or Ru oxides , 1984 .

[38]  B. Bessaïs,et al.  Formation of porous silicon for large-area silicon solar cells: A new method , 1999 .

[39]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[40]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[41]  W. Xu,et al.  New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells , 2007 .

[42]  Tom Penick,et al.  Photovoltaic Power Generation , 1979 .

[43]  F. Decker,et al.  The Photocurrent‐Voltage Characteristics of the Heterojunction Combination n ‐ Si / SnO2 / Redox ‐ Electrolyte , 1983 .

[44]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[45]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[46]  D. Moon,et al.  Enhanced stability in polymer solar cells by controlling the electrode work function via modification of indium tin oxide , 2013 .

[47]  A. Zaban,et al.  Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach. , 2012, The journal of physical chemistry letters.

[48]  W. Plieth,et al.  Photoetching of III/V semiconductors , 1989 .

[49]  Laurence M. Peter,et al.  Characterization and Modeling of Dye-Sensitized Solar Cells , 2007, ECS Transactions.

[50]  W. Badawy,et al.  Some physical properties of fluorine-doped SnO2 films prepared by spray pyrolysis , 1991 .

[51]  A. Zaban,et al.  Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating , 2009 .

[52]  G. C. Morris,et al.  Preparation and characterisation of electrodeposited n-CdS/p-CdTe thin film solar cells , 1993 .

[53]  Alaa Y. Mahmoud,et al.  Thickness dependent enhanced efficiency of polymer solar cells with gold nanorods embedded in the photoactive layer , 2013 .

[54]  Gary Hodes,et al.  Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells , 2008 .

[55]  James R. Durrant,et al.  Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements , 2009 .

[56]  I. Hassan Solar energy conversion by photoelectrochemical processes , 2011 .

[57]  Yasuyuki Araki,et al.  Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells , 2008 .

[58]  Di Gao,et al.  High-efficiency solid-state dye-sensitized solar cells based on TiO(2)-coated ZnO nanowire arrays. , 2012, Nano letters.

[59]  Jia-Yaw Chang,et al.  Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. , 2013, ACS applied materials & interfaces.

[60]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[61]  W. Badawy,et al.  Optical and Photovoltaic Characteristics of In‐Modified SnO2 Thin Films , 1990 .

[62]  W. Badawy,et al.  A study of the stability of n‐Si/SnO2 solar cells under normal working conditions , 1985 .

[63]  W. Badawy,et al.  Solid state characteristics of indium‐incorporated TiO2 thin films , 1990 .

[64]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[65]  Y. Tachibana,et al.  Charge Recombination Kinetics at an in Situ Chemical Bath-Deposited CdS/Nanocrystalline TiO2 Interface , 2009 .

[66]  A. Nozik Nanoscience and nanostructures for photovoltaics and solar fuels. , 2010, Nano letters.

[67]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[68]  W. Badawy,et al.  Electrochemical and Photoelectrochemical Behavior of n ‐ GaAs and p ‐ GaAs in the Presence of H 2 O 2 , 1990 .

[69]  A Méndez-Vilas,et al.  Fuelling the future : advances in science and technologies for energy generation, transmission and storage , 2012 .

[70]  W. Badawy,et al.  Metal-assisted etching of p-silicon-Pore formation and characterization , 2011 .

[71]  Bernd Rech,et al.  Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582 mV open-circuit voltage , 2013 .

[72]  Wei Zhang,et al.  High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillar-like" structure. , 2012, Nano letters.