A Control Flow Analysis for Beta-binders with and without static compartments

We introduce a Control Flow Analysis, that statically approximates the dynamic behaviour of processes, expressed in the Beta-binders calculus and in an extended version of the calculus modelling static compartments. Our analysis of a system is able to describe the essential behaviour of each box, tracking all the possible bindings of variables, all the possible intra- and inter-boxes communications, and, finally, all the possible movements across compartments. The analysis offers a basis for establishing static checks of biological dynamic properties. We apply our analysis to an abstract specification of the interaction between a virus and cells of the immune system and to a model of the cAMP-signaling Pathway in Olfactory Sensory Neurons.

[1]  Luca Cardelli,et al.  Brane Calculi Interactions of Biological Membranes , 2004 .

[2]  Corrado Priami,et al.  Modeling Static Biological Compartments with Beta-binders , 2007, AB.

[3]  Flemming Nielson,et al.  Static Analysis for the pi-Calculus with Applications to Security , 2001, Inf. Comput..

[4]  Jeannette M. Wing An introduction to computer science for non-majors using principles of computation , 2007, SIGCSE.

[5]  Chiara Bodei A Static Analysis for Beta-Binders , 2008, Electron. Notes Theor. Comput. Sci..

[6]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[7]  Paola Quaglia On Beta-Binders Communications , 2008, Concurrency, Graphs and Models.

[8]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[9]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[10]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[11]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[12]  Flemming Nielson,et al.  Validating firewalls using flow logics , 2002, Theor. Comput. Sci..

[13]  Corrado Priami,et al.  Modelling biochemical pathways through enhanced pi-calculus , 2004, Theor. Comput. Sci..

[14]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[15]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[16]  Flemming Nielson,et al.  Static analysis for systems biology , 2004 .

[17]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[18]  Flemming Nielson,et al.  Flow Logic: A Multi-paradigmatic Approach to Static Analysis , 2002, The Essence of Computation.

[19]  Cosimo Laneve,et al.  Graphs for Core Molecular Biology , 2003, CMSB.

[20]  Corrado Priami,et al.  Computational Thinking in Biology , 2007, Trans. Comp. Sys. Biology.

[21]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[22]  Corrado Priami,et al.  Communicating by compatibility , 2008, J. Log. Algebraic Methods Program..

[23]  Vincent Danos,et al.  Transactions in RCCS , 2005, CONCUR.

[24]  Flemming Nielson,et al.  Control-Flow Analysis in Cubic Time , 2001, ESOP.

[25]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[26]  Flemming Nielson,et al.  Control Flow Analysis for BioAmbients , 2007, BioConcur@CONCUR.

[27]  Corrado Priami,et al.  Operational Patterns in Beta-Binders , 2005, Trans. Comp. Sys. Biology.