A level set variational formulation for coupled phase change/mass transfer problems: application to freezing of biological systems

Traditionally, the difficulty of applying variational principles to a moving boundary problem lies in the unknown sub-domains over which to perform integration. The level set method (Osher and Sethian, J. Comput. Phys. 79 (1988) 12) has offered a new perspective to this problem. In this paper, we will use the standard level set equations to recast the governing equations describing solidification processes into a novel level set-based variational principle (weak form). This leads to a generalized formulation which does not depend on any particular form of the level set function. The "jump" conditions on the moving interface are naturally incorporated into domain integrals by using the Dirac delta function. As such, a fixed mesh approach is afforded by using standard Galerkin's method in the finite element formulation. The capabilities of the proposed computational method are demonstrated through a numerical example pertaining to the freezing of biological cell suspensions.

[1]  G Grinstein,et al.  Directions in condensed matter physics : memorial volume in honor of Shang-keng Ma , 1986 .

[2]  Peter Knabner,et al.  A Two-Scale Method for the Computation of Solid Liquid Phase Transitions with Dendritic Microstructure , 2002 .

[3]  Diller,et al.  Engineering-Based Contributions in Cryobiology , 1997, Cryobiology.

[4]  Karma,et al.  Numerical Simulation of Three-Dimensional Dendritic Growth. , 1996, Physical review letters.

[5]  F. Incropera,et al.  A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation , 1987 .

[6]  Bianchi,et al.  Solidification Processes of Solutions , 1997, Cryobiology.

[7]  B. Chalmers Principles of Solidification , 1964 .

[8]  J. A. Spittle,et al.  A cellular automaton model of the steady-state free'' growth of a non-isothermal dendrite , 1994 .

[9]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[10]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[11]  J. Szekely,et al.  An experimental and analytical study of the solidification of a binary dendritic system , 1978 .

[12]  J. Lovelock,et al.  The haemolysis of human red blood-cells by freezing and thawing. , 1953, Biochimica et biophysica acta.

[13]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[14]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[15]  J. Acker,et al.  Intercellular ice propagation: experimental evidence for ice growth through membrane pores. , 2001, Biophysical journal.

[16]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[17]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[18]  F H Cocks,et al.  Phase diagram relationships in cryobiology. , 1974, Cryobiology.

[19]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[20]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[21]  G. S. H. Lock Latent Heat Transfer: An Introduction to Fundamentals , 1994 .

[22]  O. Kedem,et al.  Commentary on 'Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes'. , 1989, Biochimica et biophysica acta.

[23]  Ernest G. Cravalho,et al.  Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells , 1990 .

[24]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .

[25]  P. Mazur Cryobiology: the freezing of biological systems. , 1970, Science.

[26]  R. Zernicke,et al.  Cryobiology of articular cartilage: ice morphology and recovery of chondrocytes. , 2000, Cryobiology.

[27]  Paul T. Boggs,et al.  Moving boundary problems , 1978 .

[28]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[29]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[30]  V. Voller,et al.  The modelling of heat, mass and solute transport in solidification systems , 1989 .

[31]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[32]  D. Juric,et al.  A Front-Tracking Method for Dendritic Solidification , 1996 .

[33]  C. Körber,et al.  Solute polarization during planar freezing of aqueous salt solutions , 1983 .

[34]  Thomas C. Halsey,et al.  Diffusion‐Limited Aggregation: A Model for Pattern Formation , 2000 .

[35]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[36]  K. Muldrew,et al.  Measurement of freezing point depression of water in glass capillaries and the associated ice front shape. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[38]  K. Diller,et al.  Microscopic study of coupled heat and mass transport during unidirectional solidification of binary solutions—I. thermal analysis , 1990 .

[39]  Stanley Osher,et al.  Level Set Methods , 2003 .

[40]  R. Sasikumar,et al.  Two dimensional simulation of dendrite morphology , 1994 .

[41]  Frank P. Incropera,et al.  A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems. II: Application to solidification in a rectangular cavity , 1987 .

[42]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[43]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[44]  B. Rubinsky,et al.  A continuum model for the propagation of discrete phase-change fronts in porous media in the presence of coupled heat flow, fluid flow and species transport processes , 1989 .

[45]  L. Sander,et al.  Diffusion-limited aggregation , 1983 .

[46]  M. Biot Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative Phenomena , 1970 .

[47]  K. Muldrew,et al.  The osmotic rupture hypothesis of intracellular freezing injury. , 1994, Biophysical journal.

[48]  Richard Wan,et al.  A Finite Element Model for Ice Ball Evolution in a Multi-probe Cryosurgery , 2003, Computer methods in biomechanics and biomedical engineering.

[49]  Tanmay Basak,et al.  A fixed-grid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region , 2002 .

[50]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[51]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[52]  Andrei Greenberg,et al.  Chebyshev spectral method for singular moving boundary problems with application to finance , 2003 .

[53]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[54]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[55]  Boris Rubinsky,et al.  Solidification processes in saline solutions , 1983 .

[56]  David L. Chopp,et al.  A hybrid extended finite element/level set method for modeling phase transformations , 2002 .

[57]  Peter Mazur,et al.  Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing , 1963, The Journal of general physiology.

[58]  I. Stakgold,et al.  Boundary value problems of mathematical physics , 1987 .

[59]  B. Rubinsky,et al.  An analytical method to evaluate cooling rates during cryopreservation protocols for organs. , 1984, Cryobiology.