The formation of ultracompact dwarf galaxies

Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of 100 pc and absoluteB-band magnitudes in the range -14 < M B < -11.5 mag and lower limits for the central surface brightness μ B ≥ 23 mag arcsec - 2 , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa), which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to w Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the μ B - M B region populated by low-mass Milky Way dSph satellites.

[1]  L. E. Davis,et al.  CCD surface photometry of galaxies with dynamical data. II. UBR photometry of 39 elliptical galaxies , 1990 .

[2]  D. Hunter,et al.  Identifying Old Tidal Dwarf Irregulars , 2000, astro-ph/0005257.

[3]  L. Hernquist,et al.  Formation of dwarf galaxies in tidal tails , 1992, Nature.

[4]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[5]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[6]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[7]  R. Dettmar,et al.  Dwarf galaxies and their environment , 2001 .

[8]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[9]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[10]  B. Shustov Protostars and Planets II , 1987 .

[11]  Linda J. Smith,et al.  M82-F: a doomed super star cluster? , 2001, astro-ph/0104429.

[12]  B. Whitmore,et al.  Hubble Space Telescope Images of Stephan’s Quintet: Star Cluster Formation in a Compact Group Environment , 2001, astro-ph/0104005.

[13]  Sinking satellites and the heating of galaxy discs , 1998, astro-ph/9809412.

[14]  P. Kroupa,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000 .

[15]  B. Elmegreen,et al.  An interaction model for the formation of dwarf galaxies and 10 exp 8 solar mass clouds in spiral disks , 1993 .

[16]  K. Cunha,et al.  The Chemical Evolution of the Globular Cluster ω Centauri (NGC 5139) , 2000 .

[17]  S. M. Fall,et al.  The Mass Function of Young Star Clusters in the “Antennae” Galaxies , 1999, The Astrophysical journal.

[18]  Ultracompact Dwarf Galaxies in the Fornax Cluster , 2001, astro-ph/0106377.

[19]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[20]  Dwarf elliptical galaxies , 1994, astro-ph/9409079.

[21]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[22]  H Germany,et al.  The central region of the Fornax cluster II. Spectroscopy and radial velocities of member and background galaxies , 1998, astro-ph/9807144.