Neutron star deformation due to multipolar magnetic fields

Certain multi-wavelength observations of neutron stars, such as intermittent radio emissions from rotation-powered pulsars beyond the pair-cascade death line, the pulse profile of the magnetar SGR 1900+14 after its 1998 August 27 giant flare, and X-ray spectral features of PSR J0821 4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting neutron stars are not purely dipolar and may contain higherorder multipoles. Here, we calculate the ellipticity of a non-barotropic neutron star with (i) a quadrupole poloidal-toroidal field, and (ii) a purely poloidal field containing arbitrary multipoles, deriving the relation between the ellipticity and the multipole amplitudes. We present, as a worked example, a purely poloidal field comprising dipole, quadrupole, and octupole components. We show the correlation between field energy and ellipticity for each multipole, that the l = 4 multipole has the lowest energy, and that l = 5 has the lowest ellipticity. We show how a mixed multipolar field creates an observationally testable mismatch between the principal axes of inertia (to be inferred from gravitational wave data) and the magnetic inclination angle. Strong quadrupole and octupole components (with amplitudes � 10 2 times higher than the dipole) in SGR 0418+5729 still yield ellipticity � 10 8 , consistent with current gravitational wave upper limits. The existence of higher multipoles in fast-rotating objects (e.g., newborn magnetars) has interesting implications for the braking law and hence phase tracking during coherent gravitational wave searches.

[1]  P. Marchant,et al.  Stability of magnetic fields in non-barotropic stars: an analytic treatment , 2013, 1302.0273.

[2]  E. Gotthelf,et al.  THE SPIN-DOWN OF PSR J0821–4300 AND PSR J1210–5226: CONFIRMATION OF CENTRAL COMPACT OBJECTS AS ANTI-MAGNETARS , 2013, 1301.2717.

[3]  S. K. Lander Magnetic fields in superconducting neutron stars. , 2012, Physical review letters.

[4]  Nobuyuki Kawai,et al.  Death of Massive Stars: Supernovae and Gamma-Ray Bursts , 2012 .

[5]  R. Xu,et al.  SGR 0418+5729: A SMALL INCLINATION ANGLE RESULTING IN A NOT SO LOW DIPOLE MAGNETIC FIELD? , 2012, 1207.0096.

[6]  K. Glampedakis,et al.  Gravitational waves from color-magnetic "mountains" in neutron stars. , 2012, Physical review letters.

[7]  D. Jones,et al.  Are there any stable magnetic fields in barotropic stars , 2012, 1202.2339.

[8]  L. Hui,et al.  TWISTING, RECONNECTING MAGNETOSPHERES AND MAGNETAR SPINDOWN , 2012, 1201.3635.

[9]  M. Lyutikov,et al.  THE VERY HIGH ENERGY EMISSION FROM PULSARS: A CASE FOR INVERSE COMPTON SCATTERING , 2011, 1108.3824.

[10]  A. Melatos,et al.  Updated gravitational-wave upper limits on the internal magnetic field strength of recycled pulsars , 2011, 1112.1542.

[11]  L. Hui,et al.  Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres , 2011, 1110.6669.

[12]  A. Melatos,et al.  Gravitational wave emission from a magnetically deformed non-barotropic neutron star , 2011, 1108.0219.

[13]  Luciano Rezzolla,et al.  INSTABILITY-DRIVEN EVOLUTION OF POLOIDAL MAGNETIC FIELDS IN RELATIVISTIC STARS , 2011, 1105.3971.

[14]  P. Lasky,et al.  HYDROMAGNETIC INSTABILITIES IN RELATIVISTIC NEUTRON STARS , 2011, 1105.1895.

[15]  M. Pitkin Prospects of observing continuous gravitational waves from known pulsars , 2011, 1103.5867.

[16]  F. Özel,et al.  A magnetar strength surface magnetic field for the slowly spinning down SGR 0418+5729 , 2011 .

[17]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[18]  A. Melatos,et al.  Stokes tomography of radio pulsar magnetospheres. I. Linear polarization , 2010, 1010.2816.

[19]  C. Kouveliotou,et al.  A Low-Magnetic-Field Soft Gamma Repeater , 2010, Science.

[20]  R. Ciolfi,et al.  Structure and deformations of strongly magnetized neutron stars with twisted torus configurations , 2010, 1003.2148.

[21]  A. I. Tsygan,et al.  The influence of nondipolar magnetic field and neutron star precession on braking indices of radiopulsars , 2010, 1003.0808.

[22]  K. Glampedakis,et al.  Magnetohydrodynamics of superfluid and superconducting neutron star cores , 2010, 1001.4046.

[23]  D. Lai,et al.  Pair cascades in the magnetospheres of strongly magnetized neutron stars , 2010, 1001.2365.

[24]  K. S. Thorne,et al.  SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA , 2009, 0909.3583.

[25]  D. Jones,et al.  Magnetic fields in axisymmetric neutron stars , 2009, 0903.0827.

[26]  R. Ciolfi,et al.  Relativistic models of magnetars: the twisted torus magnetic field configuration , 2009, 0903.0556.

[27]  L. Stella,et al.  Early evolution of newly born magnetars with a strong toroidal field , 2008, 0811.4311.

[28]  J. Braithwaite Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components , 2008, 0810.1049.

[29]  A. Reisenegger Stable magnetic equilibria and their evolution in the upper main sequence, white dwarfs and neutron stars , 2008, 0809.0361.

[30]  T. Guver,et al.  PHYSICAL PROPERTIES OF THE AXP 4U 0142+61 FROM X-RAY SPECTRAL ANALYSIS , 2007, 0705.3982.

[31]  C. Kouveliotou,et al.  The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-Ray Pulsar , 2007, 0705.3713.

[32]  K. Glampedakis,et al.  Modelling magnetically deformed neutron stars , 2007, 0705.1780.

[33]  J. Braithwaite,et al.  Stable magnetic fields in stellar interiors , 2005, astro-ph/0510316.

[34]  H. Spruit,et al.  Evolution of the magnetic field in magnetars , 2005, astro-ph/0510287.

[35]  A. Vecchio,et al.  Gravitational Radiation from Newborn Magnetars in the Virgo Cluster , 2005, astro-ph/0511068.

[36]  O. Nishimura INFLUENCE OF A NON-DIPOLE MAGNETIC FIELD ON THE PEAK ENERGIES OF CYCLOTRON ABSORPTION LINES , 2005 .

[37]  A. Melatos,et al.  Gravitational Radiation from an Accreting Millisecond Pulsar with a Magnetically Confined Mountain , 2005, astro-ph/0503287.

[38]  A. Melatos,et al.  Burial of the polar magnetic field of an accreting neutron star - I. Self-consistent analytic and numerical equilibria , 2004, astro-ph/0403173.

[39]  Philip Chang,et al.  Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts , 2004, astro-ph/0401555.

[40]  M. Mclaughlin,et al.  PSR J1847–0130: A Radio Pulsar with Magnetar Spin Characteristics , 2003, astro-ph/0306065.

[41]  S. Reddy Novel phases at high density and their roles in the structure and evolution of neutron stars , 2002, nucl-th/0211045.

[42]  C. Cutler Gravitational Waves from Neutron Stars with Large Toroidal B-fields , 2002, gr-qc/0206051.

[43]  S. R. Kulkarni,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[44]  C. Thompson,et al.  The Giant Flare of 1998 August 27 from SGR 1900+14. II. Radiative Mechanism and Physical Constraints on the Source , 2001, astro-ph/0110675.

[45]  S. Shapiro,et al.  Properties of r modes in rotating magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field , 2001, gr-qc/0107062.

[46]  S. Shapiro,et al.  Properties of r modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution equations , 2001, gr-qc/0107061.

[47]  C. Palomba Gravitational radiation from young magnetars: Preliminary results , 2001 .

[48]  D. Mitra,et al.  Vacuum Gaps in Pulsars and PSR J2144–3933 , 2000, astro-ph/0010603.

[49]  M. Feroci,et al.  The Giant Flare of 1998 August 27 from SGR 1900+14. I. An Interpretive Study of BeppoSAX and Ulysses Observations , 2000, astro-ph/0010494.

[50]  K. Ioka Magnetic deformation of magnetars for the giant flares of the soft gamma-ray repeaters , 2000, astro-ph/0009327.

[51]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[52]  R. N. Manchester,et al.  Discovery of Two High Magnetic Field Radio Pulsars , 1999, astro-ph/0004330.

[53]  R. Manchester,et al.  A radio pulsar with an 8.5-second period that challenges emission models , 1999, Nature.

[54]  N. Wex,et al.  Pulsar Death at an Advanced Age , 1999 .

[55]  E. Mazets,et al.  A giant , periodic flare from the soft gamma repeater SGR 1900 + 14 , 1998 .

[56]  R. Romani,et al.  $\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries, A Computer Animation , 1994, astro-ph/9406021.

[57]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[58]  J. Arons Magnetic field topology in pulsars , 1993 .

[59]  J. Rankin Toward an Empirical Theory of Pulsar Emission. VI. The Geometry of the Conal Emission Region , 1993 .

[60]  P. Goldreich,et al.  A new class of g-modes in neutron stars , 1992 .

[61]  J. Katz Do AM Hercules white dwarfs have toroidal internal fields , 1989 .

[62]  G. Wright Pinch Instabilities in Magnetic Stars , 1973 .

[63]  R. Tayler The Adiabatic Stability of Stars Containing Magnetic Fields–I: TOROIDAL FIELDS , 1973 .

[64]  R. Tayler,et al.  Adiabatic stability of stars containing magnetic fields. 2. Poloidal fields , 1973 .

[65]  V. Ferraro On the Equilibrium of Magnetic Stars. , 1954 .

[66]  S. Chandrasekhar,et al.  Problems of Gravitational Stability in the Presence of a Magnetic Field , 1953 .