Topotactic elimination of water across a C-C ligand bond in a dense 3-D metal-organic framework.

Upon heating, lithium L-malate undergoes topotactic dehydration to form a phase containing the unsaturated fumarate ligand, in which the original 3-D framework remains intact. Insight into this unusual transformation has been obtained by single crystal X-ray diffraction, MAS-NMR, in situ powder X-ray diffraction and DFT calculations.

[1]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[2]  A. Cheetham,et al.  Phase selection during the crystallization of metal-organic frameworks; thermodynamic and kinetic factors in the lithium tartrate system. , 2014, Dalton transactions.

[3]  M. Parrinello,et al.  Chiral, Racemic, and Meso-Lithium Tartrate Framework Polymorphs: A Detailed Structural Analysis , 2013 .

[4]  C. Grey,et al.  Ligand-directed control over crystal structures of inorganic-organic frameworks and formation of solid solutions. , 2013, Angewandte Chemie.

[5]  J. Vittal,et al.  Solid-state reactivity and structural transformations involving coordination polymers. , 2013, Chemical Society reviews.

[6]  K. Biradha,et al.  Crystal engineering of topochemical solid state reactions. , 2013, Chemical Society reviews.

[7]  A. Cheetham,et al.  Van der Waals forces in the perfluorinated metal-organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate. , 2012, Physical chemistry chemical physics : PCCP.

[8]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[9]  J. Vittal,et al.  Solid-state structural transformations from 2D interdigitated layers to 3D interpenetrated structures. , 2011, Angewandte Chemie.

[10]  Chuande Wu,et al.  From 2D to 3D: a single-crystal-to-single-crystal photochemical framework transformation and phenylmethanol oxidation catalytic activity. , 2011, Chemistry.

[11]  J. Vittal,et al.  One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. , 2011, Chemical reviews.

[12]  Michele Parrinello,et al.  Structural Diversity and Energetics in Anhydrous Lithium Tartrates: Experimental and Computational Studies of Novel Chiral Polymorphs and Their Racemic and Meso Analogues , 2011 .

[13]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[14]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[15]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[17]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[18]  Russell K. Feller,et al.  Structural diversity and chemical trends in hybrid inorganic-organic framework materials. , 2006, Chemical communications.

[19]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[20]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[21]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Gerhard M. J. Schmidt,et al.  Photodimerization in the solid state , 1971 .

[24]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.