Producing high-quality real-time HDR video system with FPGA (abstract only)
暂无分享,去创建一个
Video cameras can only take photographs with limited dynamic range. One method to overcome this is to combine differently exposed images of the same subject matter (i.e. a Wyckoff Set), producing a High Dynamic Range (HDR) result. HDR digital photography started almost 20 years ago. Now, it is possible to produce HDR video in real-time, on both high-power CPU/GPU systems, as well as low-power FPGA boards. However, other FPGA implementations have relied upon methods that are less accurate than current CPU and GPU-based methods. Namely, the earlier FPGA approaches used weighted sum for image compositing. In this paper we provide a novel method for real-time HDR com-positing. As an essential part of an upgraded HDR video production system, the resulting system combines differently exposed video stream (of the same subject matter) in Full HD (1080p at 60fps) on a Kintex-7 FPGA. The proposed work flow, implemented with software written in C, estimates the camera response function according to its quadtree representation and generates the compositing circuit in Verilog HDL from a Wyckoff Set. This circuit consists of parts that perform addressing using multiplexer networks and estimation with bilinear interpolation. It is parameterizable by user-specified error constraints, allowing us to explore the trade-offs in resource usage and precision of the implementation. Here is an MD5 hash function sum generated for the rest of the paper: 07897e61027d15dc3600fadbccfbd67d, citation date: December 18, 2013.