Thermal modeling of cylindrical lithium ion battery during discharge cycle

[1]  Jun Liu,et al.  Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management , 2010 .

[2]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[3]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[4]  Yan‐Bing He,et al.  Preparation and characterization of 18650 Li(Ni1/3Co1/3Mn1/3)O2/graphite high power batteries , 2008 .

[5]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[6]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[7]  Y. Inui,et al.  Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries , 2007 .

[8]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[9]  B. Fultz,et al.  Entropymetry of Lithium Intercalation in Spinel Manganese Oxide: Effect of Lithium Stoichiometry , 2006 .

[10]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[11]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[12]  B. Fultz,et al.  Entropy of Li intercalation in LixCoO2 , 2004 .

[13]  B. Fultz,et al.  Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons , 2004 .

[14]  K. Onda,et al.  Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries , 2003 .

[15]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[16]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[17]  Ralph E. White,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis , 2002 .

[18]  Ahmad Pesaran,et al.  Battery thermal models for hybrid vehicle simulations , 2002 .

[19]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[20]  D. Linden Handbook Of Batteries , 2001 .

[21]  S. Pyun,et al.  Thermodynamic and kinetic approaches to lithium intercalation into a Li1−δMn2O4 electrode using Monte Carlo simulation , 2001 .

[22]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[23]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[24]  J. Selman,et al.  Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells , 1998 .

[25]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[26]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[27]  John Newman,et al.  Temperature Rise in a Battery Module with Constant Heat Generation , 1995 .

[28]  C. Pals,et al.  Thermal modeling of the lithium/polymer battery , 1994 .

[29]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[30]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[31]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[32]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[33]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .