The Annihilating-Ideal Graph of Commutative Rings I

Let $R$ be a commutative ring with ${\Bbb{A}}(R)$ its set of ideals with nonzero annihilator. In this paper and its sequel, we introduce and investigate the {\it annihilating-ideal graph} of $R$, denoted by ${\Bbb{AG}}(R)$. It is the (undirected) graph with vertices ${\Bbb{A}}(R)^*:={\Bbb{A}}(R)\setminus\{(0)\}$, and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. First, we study some finiteness conditions of ${\Bbb{AG}}(R)$. For instance, it is shown that if $R$ is not a domain, then ${\Bbb{AG}}(R)$ has ACC (resp., DCC) on vertices if and only if $R$ is Noetherian (resp., Artinian). Moreover, the set of vertices of ${\Bbb{AG}}(R)$ and the set of nonzero proper ideals of $R$ have the same cardinality when $R$ is either an Artinian or a decomposable ring. This yields for a ring $R$, ${\Bbb{AG}}(R)$ has $n$ vertices $(n\geq 1)$ if and only if $R$ has only $n$ nonzero proper ideals. Next, we study the connectivity of ${\Bbb{AG}}(R)$. It is shown that ${\Bbb{AG}}(R)$ is a connected graph and $diam(\Bbb{AG})(R)\leq 3$ and if ${\Bbb{AG}}(R)$ contains a cycle, then $gr({\Bbb{AG}}(R))\leq 4$. Also, rings $R$ for which the graph ${\Bbb{AG}}(R)$ is complete or star, are characterized, as well as rings $R$ for which every vertex of ${\Bbb{AG}}(R)$ is a prime (or maximal) ideal. In Part II we shall study the diameter and coloring of annihilating-ideal graphs.