A Comparison of some Numerical Conformal Mapping Methods for Exterior Regions

Several methods for conformally mapping the exterior of the unit disk onto the exterior of a smooth curve are compared. These methods, which are known as the Timman, Friberg, Wegmann, and Theodorsen methods, are based on Fourier series and conjugation and are implemented using Fast Fourier Transforms. The computations reported here indicate that Wegmann's method converges faster and is more robust than the others.

[1]  Friedrich L. Bauer,et al.  Supercritical Wing Sections II , 1974 .

[2]  Convergence proofs and error estimates for an iterative method for conformal mapping , 1984 .

[3]  Thomas K. DeLillo,et al.  Numerical Conformal Mapping Methods for Exterior Regions with Corners , 1993 .

[4]  John Barrett,et al.  Book Reviews , 1821, Heredity.

[5]  Charles Zemach A conformal map formula for difficult cases , 1986 .

[6]  N. D. Halsey Comparison of the convergence characteristics of two conformal mapping methods , 1982 .

[7]  N. D. Halsey,et al.  Potential Flow Analysis of Multielement Airfoils Using Conformal Mapping , 1979 .

[8]  L unendlich- Konvergenz verschiedener Verfahren der sukzessiven Konjugation zur Berechnung konformer Abbildungen , 1986 .

[9]  Dieter Gaier,et al.  Konstruktive Methoden der konformen Abbildung , 1964 .

[10]  Martin H. Gutknecht,et al.  Numerical Experiments on Solving Theodorsen's Integral Equation for Conformal Maps with the Fast Fourier Transform and Various Nonlinear Iterative Methods , 1983 .

[11]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[12]  T. DeLillo On some relations among numerical conformal mapping methods , 1987 .

[13]  Thomas K. DeLillo,et al.  A Fornberg-like conformal mapping method for slender regions , 1993 .

[14]  M. Gutknecht Numerical conformal mapping methods based on function conjugation , 1986 .

[15]  Thomas K. DeLillo,et al.  Extremal distance, harmonic measure and numerical conformal mapping , 1993 .

[16]  D. Ives,et al.  Conformal grid generation , 1982 .

[17]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[18]  R. Wegmann Discretized versions of Newton type iterative methods for conformal mapping , 1990 .

[19]  A. Elcrat,et al.  Constant vorticity Riabouchinsky flows from a variational principle , 1990 .

[20]  Paolo Luchini,et al.  Flow around simply and multiply connected bodies: a new iterative scheme for conformal mapping , 1989 .