A series of nickel(II) and palladium(II) complexes [L2M2]2+ have been prepared and structurally characterized, where L is a pyrazolate ligand with bulky 2,6-dimethyl- or 2,6-di(isopropyl)anilinomethyl side arms. Coordinating counter anions such as chloride can bind to axial sites of the dinickel species in a solvent-dependent process, giving rise to five-coordinate high-spin metal ions. In the case of weakly coordinating anions, the metal ions are found in roughly square-planar environments, and the structures are governed by the tendency of the bulky aryl groups to avoid each other, which forces the methyl or isopropyl substituents in the aryl 2- and 6-positions to approach the metal ions from the axial directions. This leads to drastic low-field shifts of the respective 1H NMR signals, e.g. δ = 7.86 ppm for the isopropyl −CH which comes in close proximity to the low-spin nickel(II) center. The relevance of such low-field NMR resonances of protons close to the axial sites of d8 metal ions for possible three-center four-electron M···H−C hydrogen bonds involving the filled d orbital of the metal ion is discussed. In the present case, attractive M···H interactions are assumed to be of no major significance. This was corroborated by the structure of a further [L2Ni2]2+ type complex where the anilinomethyl side arms bear only a single 2-isopropyl group, which was found rotated away from the metal. Additional spectroscopic and electrochemical properties of the various complexes are reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)