Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches

This paper is devoted to the MIMO control of the catalytic reverse flow reactor (RFR) which aims to reduce the amount of volatile organic compounds (VOCs) released in the atmosphere. The RFR is characterized by the periodic reversal of the gas flow that aims to trap the heat of reaction inside the RFR. The control issue is to confine the hot spot temperature inside an envelope (in order to ensure complete conversion of the pollutant and to prevent catalyst overheating) in spite of stochastic variations of the inlet pollutant concentration (the input disturbance). The manipulated variables (dilution rate and internal electric heating ) have to be optimized. Closed-loop performances of the LQR and the MPC are compared through simulations.

[1]  Karlene A. Hoo,et al.  Low-order model identification for implementable control solutions of distributed parameter systems , 2002 .

[2]  Antonello Barresi,et al.  Simplified procedure for design of catalytic combustors with periodic flow reversal , 2001 .

[3]  Pascal Dufour,et al.  Multivariable model predictive control of a catalytic reverse flow reactor , 2003, Comput. Chem. Eng..

[4]  Karlene A. Hoo,et al.  Low-order Control-relevant Models for A Class of Distributed Parameter Systems , 2001 .

[5]  Vemuri Balakotaiah,et al.  Effective models for packed-bed catalytic reactors , 1999 .

[6]  D. Vortmeyer,et al.  Equivalence of one- and two-phase models for heat transfer processes in packed beds: one dimensional theory , 1974 .

[7]  Ulrich Nieken,et al.  Control of the ignited steady state in autothermal fixed-bed reactors for catalytic combustion , 1994 .

[8]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[9]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[10]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[11]  Jean Biston,et al.  Modeling of a distributed parameter process with a variable boundary: application to its control , 1994 .

[12]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[13]  Ahmet Karakas,et al.  Control of nonlinear distributed parameter systems using generalized invariants , 2000, Autom..

[14]  Arjan van der Schaft,et al.  Proceedings of the 30th IEEE Conference on Decision and Control , 1991 .

[15]  Françoise Couenne,et al.  Model predictive control of a catalytic reverse flow reactor , 2003, IEEE Trans. Control. Syst. Technol..

[16]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[17]  William S. Levine,et al.  The Control Handbook , 2005 .

[18]  Karlene A. Hoo,et al.  System identification and model-based control for distributed parameter systems , 2004, Comput. Chem. Eng..

[19]  Hassan Hammouri,et al.  A high gain observer for a class of uniformly observable systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  Jason M. Keith Controlling reverse-flow reactors via multiscale transient thermal dispersion , 2003 .

[21]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part I. Conduction-dominated melt , 1997 .

[22]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[23]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[24]  Mark J. Balas,et al.  Stable Feedback Control of Linear Distributed Parameter Systems: Time and Frequency Domain Conditions☆ , 1998 .

[25]  Paul M. Frank,et al.  Advances in Control , 1999 .

[26]  R. Fletcher Practical Methods of Optimization , 1988 .

[27]  Ulrich Nieken,et al.  Limiting cases and approximate solutions for fixed-bed reactors with periodic flow reversal , 1995 .

[28]  Paul M. Frank,et al.  Advances in control : highlights of ECC '99 , 1999 .

[29]  Pascal Dufour,et al.  On nonlinear distributed parameter model predictive control strategy: on-line calculation time reduction and application to an experimental drying process , 2003, Comput. Chem. Eng..

[30]  P. Daoutidis,et al.  Robust control of hyperbolic PDE systems , 1998 .

[31]  Hassan Hammouri,et al.  Observer design for reverse flow reactor , 2004 .

[32]  K. R. Westerterp,et al.  Catalytic combustion of very lean mixtures in a reverse flow reactor using an internal electrical heater. , 1997 .

[33]  Ahmet Palazoglu,et al.  Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions , 2002 .

[34]  Hector Budman,et al.  Control of a nonadiabatic packed bed reactor under periodic flow reversal , 1996 .

[35]  Antonios Armaou,et al.  Analysis and control of parabolic PDE systems with input constraints , 2003, Autom..

[36]  A. A. Patwardhan,et al.  Nonlinear model-predictive control of distributed-parameter systems , 1992 .

[37]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[38]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[39]  Mondher Farza,et al.  A Simple Observer for a Class of Nonlinear Systems , 1998 .

[40]  R. Pontier,et al.  Reverse flow reactor at short switching periods for VOC combustion , 2001 .