Camera-based detection and removal of shadows from interactive multiprojector displays

Front-projection displays are a cost-effective and increasingly popular method for large format visualization and immersive rendering of virtual models. New approaches to projector tiling, automatic calibration, and color balancing have made multiprojector display systems feasible without undue infrastructure changes and maintenance. As a result, front-projection displays are being used to generate seamless, visually immersive worlds for virtual reality and visualization applications with reasonable cost and maintenance overhead. However, these systems suffer from a fundamental problem: Users and other objects in the environment can easily and inadvertently block projectors, creating shadows on the displayed image. Shadows occlude potentially important information and detract from the sense of presence an immersive display may have conveyed. We introduce a technique that detects and corrects shadows in a multiprojector display while it is in use. Cameras observe the display and compare observations with an expected image to detect shadowed regions. These regions are transformed to the appropriate projector frames, where corresponding pixel values are increased and/or attenuated. In display regions where more than one projector contributes to the image, shadow regions are eliminated.

[1]  Tat-Jen Cham,et al.  Calibrating Scalable Multi-Projector Displays Using Camera Homography Trees , 2001 .

[2]  Michael S. Brown,et al.  Projected Imagery in Your "Office of the Future" , 2000, IEEE Computer Graphics and Applications.

[3]  Christopher O. Jaynes,et al.  Monitoring and Correction of Geometric Distortion in Projected Displays , 2002, WSCG.

[4]  Rajeev J. Surati Scalable self-calibrating display technology for seamless large-scale displays , 1999 .

[5]  James M. Rehg,et al.  Interactive Walls: Addressing the Challenges of Large-scale Interactive Surfaces , 2002 .

[6]  W. Brent Seales,et al.  Dynamic shadow removal from front projection displays , 2001, Proceedings Visualization, 2001. VIS '01..

[7]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[8]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[9]  Zen Chen,et al.  Incremental model building of polyhedral objects using structured light , 1993, Pattern Recognit..

[10]  Ruigang Yang,et al.  PixelFlex: a reconfigurable multi-projector display system , 2001, Proceedings Visualization, 2001. VIS '01..

[11]  Maxine D. Brown,et al.  The ImmersaDesk and Infinity Wall projection-based virtual reality displays , 1997, COMG.

[12]  Thomas A. Funkhouser,et al.  Large-format displays , 2000, IEEE Computer Graphics and Applications.

[13]  Greg Welch,et al.  COMPUTER GRAPHICS OPTIQUE Optical Superposition of Projected Computer Graphics , 2001, EGVE/IPT.

[14]  W. Brent Seales,et al.  Multi-projector displays using camera-based registration , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[15]  Mark Hereld,et al.  Introduction to building projection-based tiled display systems , 2000, IEEE Computer Graphics and Applications.

[16]  Christopher O. Jaynes,et al.  A Scalable Framework for High-Resolution Immersive Displays , 2002 .

[17]  W. B. Seales,et al.  The Metaverse: a networked collection of inexpensive, self-configuring, immersive environments , 2003, IPT/EGVE.

[18]  Rahul Sukthankar,et al.  Scalable alignment of large-format multi-projector displays using camera homography trees , 2002, IEEE Visualization, 2002. VIS 2002..

[19]  Hiroshi Ishii,et al.  Emancipated pixels: real-world graphics in the luminous room , 1999, SIGGRAPH.

[20]  Gordon Stoll,et al.  WireGL: a scalable graphics system for clusters , 2001, SIGGRAPH.

[21]  Paul A. Beardsley,et al.  Natural video matting using camera arrays , 2006, ACM Trans. Graph..

[22]  Desney S. Tan,et al.  Pre-emptive shadows: eliminating the blinding light from projectors , 2002, CHI Extended Abstracts.

[23]  Rick Stevens,et al.  Access grid: Immersive group-to-group collaborative visualization , 2000 .

[24]  Gita Reese Sukthankar,et al.  Dynamic shadow elimination for multi-projector displays , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[25]  Rick Stevens,et al.  Developing tiled projection display systems , 2000 .

[26]  Kai Li,et al.  Color gamut matching for tiled display walls , 2003 .

[27]  Adam Finkelstein,et al.  Automatic alignment of high-resolution multi-projector displays using an uncalibrated camera , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[28]  James M. Rehg,et al.  Shadow elimination and occluder light suppression for multi-projector displays , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..