Fine-Grained Semantics for Probabilistic Programs

Probabilistic programming is an emerging technique for modeling processes involving uncertainty. Thus, it is important to ensure these programs are assigned precise formal semantics that also cleanly handle typical exceptions such as non-termination or division by zero. However, existing semantics of probabilistic programs do not fully accommodate different exceptions and their interaction, often ignoring some or conflating multiple ones into a single exception state, making it impossible to distinguish exceptions or to study their interaction.

[1]  Gilles Barthe,et al.  Probabilistic Relational Reasoning for Differential Privacy , 2012, TOPL.

[2]  Roman Fric,et al.  A Categorical Approach to Probability Theory , 2010, Stud Logica.

[3]  Joost-Pieter Katoen,et al.  On the Hardness of Almost-Sure Termination , 2015, MFCS.

[4]  Alexandra Silva,et al.  Cantor meets Scott: semantic foundations for probabilistic networks , 2016, POPL.

[5]  Ugo Dal Lago,et al.  A lambda-calculus foundation for universal probabilistic programming , 2015, ICFP.

[6]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[7]  Sriram K. Rajamani,et al.  Efficiently Sampling Probabilistic Programs via Program Analysis , 2013, AISTATS.

[8]  Jacques Carette,et al.  Probabilistic Inference by Program Transformation in Hakaru (System Description) , 2016, FLOPS.

[9]  Joost-Pieter Katoen,et al.  Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs , 2016, ESOP.

[10]  A. Gelman,et al.  Stan , 2015 .

[11]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[12]  Timon Gehr,et al.  PSI: Exact Symbolic Inference for Probabilistic Programs , 2016, CAV.

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  Sam Staton,et al.  Commutative Semantics for Probabilistic Programming , 2017, ESOP.

[15]  Chung-Kil Hur,et al.  Slicing probabilistic programs , 2014, PLDI.

[16]  Dan Grossman,et al.  Expressing and verifying probabilistic assertions , 2014, PLDI.

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[18]  Nils Jansen,et al.  Understanding Probabilistic Programs , 2015, Correct System Design.

[19]  Daniel Huang,et al.  On Programming Languages for Probabilistic Modeling , 2017 .

[20]  W. Marsden I and J , 2012 .

[21]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[22]  Patrick Cousot,et al.  Probabilistic Abstract Interpretation , 2012, ESOP.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[25]  Frank D. Wood,et al.  A Compilation Target for Probabilistic Programming Languages , 2014, ICML.

[26]  Ohad Kammar,et al.  Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[27]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[28]  Ohad Kammar,et al.  A convenient category for higher-order probability theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[29]  Chung-Kil Hur,et al.  A Provably Correct Sampler for Probabilistic Programs , 2015, FSTTCS.

[30]  Annabelle McIver,et al.  Conditioning in Probabilistic Programming , 2015, MFPS.

[31]  R. Aumann Borel structures for function spaces , 1961 .

[32]  Didier Chauveau,et al.  An automated stopping rule for MCMC convergence assessment , 1999, Comput. Stat..

[33]  Benjamin Grégoire,et al.  Coupling proofs are probabilistic product programs , 2016, POPL.

[34]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[35]  Steve Cheng,et al.  A Crash Course on the Lebesgue Integral and Measure Theory , 2008 .