Three-Dimensional Lattice Pseudo-Potentials for Multiphase Flow Simulations at High Density Ratios

It is shown that the combination of generalized Van der Waals equations of state with high-order discrete velocity lattices, permits to simulate the dynamics of liquid droplets at air-water density ratios, with very moderate levels of spurious currents near the droplet interface. Satisfactory agreement with experimental data on droplet collisions at density ratios of order thousand is reported.

[1]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[2]  Kazuhiko Suga,et al.  Numerical simulation of binary liquid droplet collision , 2005 .

[3]  S Succi,et al.  Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Xiaoyi He,et al.  Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows , 2002 .

[5]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[7]  Sauro Succi,et al.  Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials , 2010 .

[8]  S Succi,et al.  Generalized lattice Boltzmann method with multirange pseudopotential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[10]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[12]  Xiaowen Shan,et al.  Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Succi,et al.  MULTI-RELAXATION TIME LATTICE BOLTZMANN MODEL FOR MULTIPHASE FLOWS , 2008 .

[14]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[15]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[16]  Chung King Law,et al.  Regimes of coalescence and separation in droplet collision , 1997, Journal of Fluid Mechanics.

[17]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Sauro Succi,et al.  Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state , 2012 .

[19]  Irina Ginzburg,et al.  Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and Advection-Diffusion Equations , 2007 .

[20]  D. Patil,et al.  Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Bharat Kaul,et al.  Data structure and movement for lattice-based simulations. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Laura Schaefer,et al.  Equations of state in a lattice Boltzmann model , 2006 .

[23]  R. Benzi,et al.  Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations , 2009, 0906.3611.

[24]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[25]  Takaji Inamuro,et al.  A Galilean Invariant Model of the Lattice Boltzmann Method for Multiphase Fluid Flows Using Free-Energy Approach , 2000 .

[26]  X. Shan Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sauro Succi,et al.  Lattice Boltzmann Models with Mid-Range Interactions , 2007 .

[28]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[29]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[30]  T. Inamuro,et al.  Lattice Boltzmann simulation of droplet collision dynamics , 2004 .

[31]  Gretar Tryggvason,et al.  Direct numerical simulations of gas/liquid multiphase flows , 2011 .

[32]  Steven A. Orszag,et al.  Discrete Rotational Symmetry, Moment Isotropy, and Higher Order Lattice Boltzmann Models , 2007, J. Sci. Comput..

[33]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[34]  Haowen XiComer Duncan,et al.  Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow , 1998, comp-gas/9807001.

[35]  John Abraham,et al.  Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model , 2005 .

[36]  Hang Ding,et al.  Numerical Simulations of Flows with Moving Contact Lines , 2014 .