Bayesian views of generalized additive modelling

Links between frequentist and Bayesian approaches to smoothing were highlighted early on in the smoothing literature, and power much of the machinery that underlies the modern generalized additive modelling framework (implemented in software such as the R package $\texttt{mgcv}$), but they tend to be unknown or under appreciated. This article aims to highlight useful links between Bayesian and frequentist approaches to smoothing, and their practical applications (with a somewhat $\texttt{mgcv}$-centric viewpoint).

[1]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[2]  S. Wood Thin plate regression splines , 2003 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  S. Wood,et al.  Coverage Properties of Confidence Intervals for Generalized Additive Model Components , 2012 .

[5]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[6]  Simon N. Wood,et al.  Soap film smoothing , 2008 .

[7]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[8]  G. Kauermann,et al.  A Note on Penalized Spline Smoothing With Correlated Errors , 2007 .

[9]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[10]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[11]  Giampiero Marra,et al.  Modelling the spatiotemporal distribution of the incidence of resident foreign population , 2012 .

[12]  Paul-Christian Bürkner,et al.  brms: An R Package for Bayesian Multilevel Models Using Stan , 2017 .

[13]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[14]  Simon N Wood,et al.  Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv , 2016, 1602.02539.

[15]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[16]  A. Gelman Analysis of variance: Why it is more important than ever? , 2005, math/0504499.

[17]  Thiago G. Martins,et al.  Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors , 2014, 1403.4630.

[18]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .

[19]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[20]  R. Tibshirani,et al.  Bayesian Backfitting , 1998 .

[21]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[22]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[23]  Simon N. Wood,et al.  Space‐time modelling of blue ling for fisheries stock management , 2013 .

[24]  G. Wahba Spline models for observational data , 1990 .

[25]  Douglas Nychka,et al.  Bayesian Confidence Intervals for Smoothing Splines , 1988 .

[26]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[27]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[28]  Hiroshi Shono,et al.  Scientific Committee Sixth Regular Session Application of the Tweedie Distribution to Zero-catch Data in Cpue Analysis Application of the Tweedie Distribution to Zero-catch Data in Cpue Analysis , 2022 .

[29]  A note on basis dimension selection in generalized additive modelling , 2016, 1602.06696.

[30]  Giampiero Marra,et al.  Practical variable selection for generalized additive models , 2011, Comput. Stat. Data Anal..

[31]  R. Lauth,et al.  Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species , 2018, Polar Biology.

[32]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[33]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[34]  J. Fieberg,et al.  Comparative interpretation of count, presence–absence and point methods for species distribution models , 2012 .

[35]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[36]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[37]  S. Wood,et al.  Smoothing Parameter and Model Selection for General Smooth Models , 2015, 1511.03864.

[38]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[39]  David L. Miller,et al.  Understanding the Stochastic Partial Differential Equation Approach to Smoothing , 2019, Journal of Agricultural, Biological and Environmental Statistics.

[40]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[41]  Ludwig Fahrmeir,et al.  Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..

[42]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[43]  Monica Musio,et al.  Modeling Spatiotemporal Forest Health Monitoring Data , 2009 .

[44]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[45]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[46]  R. Todd Ogden,et al.  Smoothing parameter selection for a class of semiparametric linear models , 2009 .

[47]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[48]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[49]  Random Effects Old and New , 2011 .

[50]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[51]  G. S. Watson Smoothing and interpolation by kriging and with splines , 1984 .

[52]  S. Wood,et al.  Simplified integrated nested Laplace approximation , 2019, Biometrika.

[53]  S. Wood ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES , 2006 .

[54]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[55]  P. Whittle On the Smoothing of Probability Density Functions , 1958 .

[56]  Len Thomas,et al.  A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales (Mesoplodon densirostris) from Mid-Frequency Active Sonar , 2014, PloS one.

[57]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[58]  Len Thomas,et al.  Spatial models for distance sampling data: recent developments and future directions , 2013 .

[59]  Chong Gu,et al.  Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method , 1991, SIAM J. Sci. Comput..

[60]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[61]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .