Convex Optimization Theory
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[3] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[4] Frisch. La résolution des problèmes de programme linéaire par la méthode du potentiel logarithmique , 1956 .
[5] A. A. Goldstein,et al. Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.
[6] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[8] Boris Polyak. Some methods of speeding up the convergence of iteration methods , 1964 .
[9] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[10] M. Hestenes. Multiplier and gradient methods , 1969 .
[11] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[12] P. C. Haarhoff,et al. A New Method for the Optimization of a Nonlinear Function Subject to Nonlinear Constraints , 1970, Comput. J..
[13] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[14] D. Bertsekas,et al. A new penalty function method for constrained minimization , 1972, CDC 1972.
[15] R. Rockafellar. The multiplier method of Hestenes and Powell applied to convex programming , 1973 .
[16] R. Tyrrell Rockafellar,et al. A dual approach to solving nonlinear programming problems by unconstrained optimization , 1973, Math. Program..
[17] Charles A. Holloway. An extension of the frank and Wolfe method of feasible directions , 1974, Math. Program..
[18] Philip Wolfe,et al. Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974, Math. Program..
[19] E. A. Nurminskii. Minimization of nondifferentiable functions in the presence of noise , 1974 .
[20] P. Wolfe. Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .
[21] P. Camerini,et al. On improving relaxation methods by modified gradient techniques , 1975 .
[22] Jack Elzinga,et al. A central cutting plane algorithm for the convex programming problem , 1975, Math. Program..
[23] Barry Warren Kort,et al. Combined primal-dual and penalty function algorithms for nonlinear programming , 1975 .
[24] P. Wolfe,et al. A METHOD OF CONJUGATE SUBGRADIENTS FOR , 1975 .
[25] Dimitri P. Bertsekas,et al. Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..
[26] D. Bertsekas. Nondifferentiable optimization via approximation , 1975 .
[27] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[28] D. Bertsekas,et al. Combined Primal–Dual and Penalty Methods for Convex Programming , 1976 .
[29] Dimitri P. Bertsekas,et al. Multiplier methods: A survey , 1975, at - Automatisierungstechnik.
[30] D. Bertsekas. Approximation procedures based on the method of multipliers , 1977 .
[31] Gregory B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .
[32] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[33] B. T. Poljak. On the Bertsekas' method for minimization of composite functions , 1979 .
[34] G. Papavassilopoulos. Algorithms for a class of nondifferentiable problems , 1981 .
[35] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[36] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .
[37] Y. Ermoliev. Stochastic quasigradient methods and their application to system optimization , 1983 .
[38] John N. Tsitsiklis,et al. Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.
[39] F. Luque. Asymptotic convergence analysis of the proximal point algorithm , 1984 .
[40] A. Barrett. Network Flows and Monotropic Optimization. , 1984 .
[41] Jonathan E. Spingarn,et al. Applications of the method of partial inverses to convex programming: Decomposition , 1985, Math. Program..
[42] David K. Smith,et al. Mathematical Programming: Theory and Algorithms , 1986 .
[43] J. A. Ventura,et al. Restricted simplicial decomposition: computation and extensions , 1987 .
[44] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[45] Andrzej Ruszczyski. An augmented Lagrangian decomposition method for block diagonal linear programming problems , 1989 .
[46] Zhi-Quan Luo,et al. On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks , 1991, Neural Computation.
[47] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[48] Y. Censor,et al. On the proximal minimization algorithm with D-Functions , 1992 .
[49] Osman Güler,et al. New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..
[50] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[51] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[52] Jonathan Eckstein,et al. Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..
[53] Paul Tseng,et al. On the convergence of the exponential multiplier method for convex programming , 1993, Math. Program..
[54] Claude Lemaréchal,et al. Convergence of some algorithms for convex minimization , 1993, Math. Program..
[55] Jose A. Ventura,et al. Restricted simplicial decomposition for convex constrained problems , 1993, Math. Program..
[56] Marc Teboulle,et al. Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..
[57] Claude Lemaréchal,et al. An approach to variable metric bundle methods , 1993, System Modelling and Optimization.
[58] Paul Tseng,et al. Partial Proximal Minimization Algorithms for Convex Pprogramming , 1994, SIAM J. Optim..
[59] Luo Zhi-quan,et al. Analysis of an approximate gradient projection method with applications to the backpropagation algorithm , 1994 .
[60] Marc Teboulle,et al. Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..
[61] Marc Teboulle,et al. A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..
[62] Luigi Grippo,et al. A class of unconstrained minimization methods for neural network training , 1994 .
[63] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[64] O. Mangasarian,et al. Serial and parallel backpropagation convergence via nonmonotone perturbed minimization , 1994 .
[65] Dimitri P. Bertsekas,et al. Incremental Least Squares Methods and the Extended Kalman Filter , 1996, SIAM J. Optim..
[66] Marc Teboulle,et al. Nonlinear rescaling and proximal-like methods in convex optimization , 1997, Math. Program..
[67] John N. Tsitsiklis,et al. Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.
[68] Robert Mifflin,et al. A quasi-second-order proximal bundle algorithm , 1996, Math. Program..
[69] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[70] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[71] Ann-Brith Strömberg. Conditional Subgradient Methods and Ergodic Convergence in Nonsmooth Optimization , 1997 .
[72] D. Bertsekas. Gradient convergence in gradient methods , 1997 .
[73] Dimitri P. Bertsekas,et al. A New Class of Incremental Gradient Methods for Least Squares Problems , 1997, SIAM J. Optim..
[74] Paul Tseng,et al. An Incremental Gradient(-Projection) Method with Momentum Term and Adaptive Stepsize Rule , 1998, SIAM J. Optim..
[75] Defeng Sun,et al. Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..
[76] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[77] M. Patriksson,et al. Ergodic convergence in subgradient optimization , 1998 .
[78] M. Caramanis,et al. Efficient Lagrangian relaxation algorithms for industry size job-shop scheduling problems , 1998 .
[79] Dimitri P. Bertsekas,et al. Network optimization : continuous and discrete models , 1998 .
[80] M. Solodov,et al. Error Stability Properties of Generalized Gradient-Type Algorithms , 1998 .
[81] N. Shor. Nondifferentiable Optimization and Polynomial Problems , 1998 .
[82] Mikhail V. Solodov,et al. Incremental Gradient Algorithms with Stepsizes Bounded Away from Zero , 1998, Comput. Optim. Appl..
[83] Jonathan Eckstein,et al. Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..
[84] J. Burke,et al. A Variable Metric Proximal Point Algorithm for Monotone Operators , 1999 .
[85] Torbjörn Larsson,et al. Side constrained traffic equilibrium models: analysis, computation and applications , 1999 .
[86] A. Iusem. Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization , 1999 .
[87] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[88] James Steichen. 1934 , 2000, Camden Fifth Series.
[89] Stefan Feltenmark,et al. Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..
[90] Andrzej Stachurski,et al. Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..
[91] Paul Tseng,et al. An ε-relaxation method for separable convex cost generalized network flow problems , 2000, Math. Program..
[92] Vivek S. Borkar,et al. Distributed Asynchronous Incremental Subgradient Methods , 2001 .
[93] D. Bertsekas,et al. Convergen e Rate of In remental Subgradient Algorithms , 2000 .
[94] Dimitri P. Bertsekas,et al. Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..
[95] Paul Tseng,et al. An epsilon-out-of-Kilter Method for Monotropic Programming , 2001, Math. Oper. Res..
[96] Jean-Philippe Vial,et al. Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method , 2002, Optim. Methods Softw..
[97] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[98] X. Zhao,et al. New Bundle Methods for Solving Lagrangian Relaxation Dual Problems , 2002 .
[99] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[100] X. Guan,et al. New Lagrangian Relaxation Based Algorithm for Resource Scheduling with Homogeneous Subproblems , 2002 .
[101] M. Teboulle,et al. Asymptotic cones and functions in optimization and variational inequalities , 2002 .
[102] Masao Fukushima,et al. Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..
[103] Teemu Pennanen,et al. Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity , 2002, Math. Oper. Res..
[104] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[105] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[106] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[107] Paul Tseng,et al. An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods , 2004, Math. Oper. Res..
[108] Robert D. Nowak,et al. Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.
[109] A. Banerjee. Convex Analysis and Optimization , 2006 .
[110] Alfred O. Hero,et al. A Convergent Incremental Gradient Method with a Constant Step Size , 2007, SIAM J. Optim..
[111] Alfredo N. Iusem,et al. Dual convergence of the proximal point method with Bregman distances for linear programming , 2007, Optim. Methods Softw..
[112] M. Yuan,et al. Dimension reduction and coefficient estimation in multivariate linear regression , 2007 .
[113] P. Luh,et al. On the Surrogate Gradient Algorithm for Lagrangian Relaxation , 2007 .
[114] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[115] D. Bertsekas. Extended Monotropic Programming and Duality , 2008 .
[116] Samir Elhedhli,et al. Nondifferentiable Optimization , 2009, Encyclopedia of Optimization.
[117] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[118] Sharon L. Wolchik. 1989 , 2009 .
[119] Dimitri P. Bertsekas,et al. The effect of deterministic noise in subgradient methods , 2010, Math. Program..
[120] Marc Teboulle,et al. Gradient-based algorithms with applications to signal-recovery problems , 2010, Convex Optimization in Signal Processing and Communications.
[121] Dimitri P. Bertsekas,et al. A Unifying Polyhedral Approximation Framework for Convex Optimization , 2011, SIAM J. Optim..
[122] Angelia Nedic,et al. Random algorithms for convex minimization problems , 2011, Math. Program..
[123] Dimitri P. Bertsekas,et al. Incremental proximal methods for large scale convex optimization , 2011, Math. Program..