The tractability frontier for NFA minimization

We prove that minimizing finite automata is NP-hard for almost all classes of automata that extend the class of deterministic finite automata. More specifically, we show that minimization is NP-hard for all finite automata classes that subsume the class of @dNFAs which accept strings of length at most three. Here, @dNFAs are the finite automata that are unambiguous, allow at most one state q with a non-deterministic transition for at most one alphabet symbol a, and are allowed to visit state q at most once in a run. As a corollary, we also obtain that the same result holds for all finite automata classes that subsume that class of finite automata that are unambiguous, have at most two initial states, and accept strings of length at most two.

[1]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[2]  Henrik Björklund,et al.  The Tractability Frontier for NFA Minimization , 2008, ICALP.

[3]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[4]  Tao Jiang,et al.  The Structure and Complexity of Minimal NFA's over a Unary Alphabet , 1991, FSTTCS.

[5]  Hartmut Klauck,et al.  Measures of Nondeterminism in Finite Automata , 2000, ICALP.

[6]  Georg Schnitger,et al.  Regular Expressions and NFAs Without epsilon-Transitions , 2006, STACS.

[7]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..

[8]  Andreas Maletti,et al.  An nlogn Algorithm for Hyper-minimizing States in a (Minimized) Deterministic Automaton , 2009, CIAA.

[9]  Markus Holzer,et al.  Computational Complexity of NFA Minimization for Finite and Unary Languages , 2007, LATA.

[10]  Marc Gyssens,et al.  Regular Expressions with Counting: Weak versus Strong Determinism , 2009, MFCS.

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Kai Salomaa,et al.  Descriptional Complexity of Nondeterministic Finite Automata , 2007, Developments in Language Theory.

[13]  Artur Jez,et al.  Hyper-minimisation Made Efficient , 2009, MFCS.

[14]  Olivier Carton,et al.  Continuant polynomials and worst-case behavior of Hopcroft's minimization algorithm , 2009, Theor. Comput. Sci..

[15]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[16]  Olivier Carton,et al.  Minimization of Automata , 2010, ArXiv.

[17]  Martin Kutrib,et al.  Nondeterministic Finite Automata-Recent Results on the Descriptional and Computational Complexity , 2008, CIAA.

[18]  Andreas Maletti,et al.  An nlogn algorithm for hyper-minimizing a (minimized) deterministic automaton , 2010, Theor. Comput. Sci..

[19]  Alexander Okhotin Unambiguous Finite Automata over a Unary Alphabet , 2010, MFCS.

[20]  Georg Schnitger,et al.  Minimizing nfa's and regular expressions , 2007, J. Comput. Syst. Sci..

[21]  Parosh Aziz Abdulla,et al.  Minimization of Non-deterministic Automata with Large Alphabets , 2005, CIAA.

[22]  Markus Holzer,et al.  Inapproximability of Nondeterministic State and Transition Complexity Assuming P=!NP , 2007, Developments in Language Theory.

[23]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[24]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[25]  Wouter Gelade Succinctness of regular expressions with interleaving, intersection and counting , 2010, Theor. Comput. Sci..

[26]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[27]  Harry B. Hunt,et al.  On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..

[28]  Juraj Hromkovic,et al.  Comparing the size of NFAs with and without epsilon-transitions , 2007, Theor. Comput. Sci..

[29]  Frank Neven,et al.  Succinctness of the Complement and Intersection of Regular Expressions , 2008, TOCL.

[30]  Frank Neven,et al.  Simplifying XML schema: effortless handling of nondeterministic regular expressions , 2009, SIGMOD Conference.

[31]  Dag Hovland Regular Expressions with Numerical Constraints and Automata with Counters , 2009, ICTAC.

[32]  Andreas Malcher,et al.  Minimizing finite automata is computationally hard , 2004, Theor. Comput. Sci..

[33]  Viliam Geffert,et al.  Hyper-minimizing minimized deterministic finite state automata , 2009, RAIRO Theor. Informatics Appl..

[34]  Markus Holzer,et al.  Tight Bounds on the Descriptional Complexity of Regular Expressions , 2009, Developments in Language Theory.