Increased Perpendicular TMR in FeCoB/MgO/FeCoB Magnetic Tunnel Junctions by Seedlayer Modifications

By modifying the seedlayer in perpendicular FeCoB/MgO/FeCoB magnetic tunnel junctions (MTJs), we observe an increase in maximum tunneling magnetoresistance (TMR) from 65% up to 138%. It's found that decreasing the Ta deposition rate in Ta/Ru/Ta underlayers allows for greater annealing temperatures (up to 350 ) while still maintaining a perpendicular easy axis. An improvement is also seen at a lower temperature where both seedlayers maintain a perpendicular FeCoB easy axis indicating that the increase in TMR is not solely related to annealing at a higher temperature.

[1]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[2]  C. C. Wang,et al.  Annealing temperature window for tunneling magnetoresistance and spin torque switching in CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions , 2011 .

[3]  L. Pileggi,et al.  Novel STT-MTJ Device Enabling All-Metallic Logic Circuits , 2012, IEEE Transactions on Magnetics.

[4]  Jian-Gang Zhu,et al.  Optimization of Ta thickness for perpendicular magnetic tunnel junction applications in the MgO-FeCoB-Ta system , 2012 .

[5]  H. Ohno,et al.  Origin of the collapse of tunnel magnetoresistance at high annealing temperature in CoFeB/MgO perpendicular magnetic tunnel junctions , 2011 .

[6]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[7]  H. Ohno A window on the future of spintronics. , 2010, Nature Materials.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  H. Ohno,et al.  Transmission electron microscopy study on the effect of various capping layers on CoFeB/MgO/CoFeB pseudo spin valves annealed at different temperatures , 2012 .

[11]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[12]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[13]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[14]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[15]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[16]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[17]  J. Nowak,et al.  Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions , 2011 .

[18]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[19]  S. Yuasa,et al.  Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co∕MgO∕Co magnetic tunnel junctions with bcc Co(001) electrodes , 2006 .

[20]  Seung H. Kang,et al.  Development of Embedded STT-MRAM for Mobile System-on-Chips , 2011, IEEE Transactions on Magnetics.