For the fabrication of highly precise glass optics, Precision Glass Molding (PGM) is the state-of-the-art replicative manufacturing process. However, the process efficiency is mainly determined by the service lifetime of the molding tools and, in particular, the performance of the protective coatings. Testing the lifetime in real molding machines is extremely cost and effort intensive. In a new testing facility the protective coating performance can be evaluated by systematically inducing tool wear under realistic process conditions. A high number of pressing cycles can be executed under minimal time and material effort, reducing the cost consumption for such coating validation tests significantly. In this paper, a fast method for evaluating the performance of coatings is provided. The machine concept and evaluation method are presented in comparison to the production conditions. Investigations are targeted on the similarities between tool wear in production and those induced in the testing facility. After inducing wear patterns on test specimens in the new facility, surface alterations are characterized with light microscopy. The results show similar degradation patterns as known from production, on the coated tools. The results presented show that the facility provides unique opportunity for optimizing coatings, but also glass compositions, for use in Precision Glass Molding.
[1]
Fritz Klocke,et al.
Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt–Ir coatings by nano-tests determined
,
2011
.
[2]
Fritz Klocke,et al.
A complete qualification methodology for coatings of precision glass molding tools
,
2011,
Optical Engineering + Applications.
[3]
Fritz Klocke,et al.
Comparison of Nitride and Noble Metal Coatings for Precision Glass Molding Tools
,
2010
.
[4]
Rainer Gadow,et al.
Application of diamond-like carbon coatings on steel tools in the production of precision glass components
,
2004
.
[5]
Kung-Jeng Ma,et al.
Design of Protective Coatings for Glass Lens Molding
,
2007
.