Lightwave applications of fiber Bragg gratings

Fiber Bragg gratings (FBGs) have emerged as important components in a variety of lightwave applications. Their unique filtering properties and versatility as in-fiber devices is illustrated by their use in wavelength-stabilized lasers, fiber lasers, remotely pump amplifiers. Raman amplifiers, phase conjugators, wavelength converters, passive optical networks, wavelength division multiplexers (WDMs) demultiplexers, add/drop multiplexers, dispersion compensators, and gain equalizers.

[1]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[2]  P. Bousselet,et al.  481 km, 2.5 Gbit/s and 501 km, 622 Mbit/s unrepeatered transmission using forward error correction and remotely pumped postamplifiers and preamplifiers , 1995 .

[3]  C. R. Giles,et al.  Polarization-independent phase conjugation in a reflective optical mixer , 1995, IEEE Photonics Technology Letters.

[4]  Y. Silberberg,et al.  Inhomogeneously broadened fiber-amplifier cascades for transparent multiwavelength lightwave networks , 1995 .

[5]  M. Zirngibl,et al.  Wavelength conversion in a 1550-nm multifrequency laser , 1997, IEEE Photonics Technology Letters.

[6]  G. Meltz,et al.  Formation of Bragg gratings in optical fibers by a transverse holographic method. , 1989, Optics letters.

[7]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[8]  Chien-Wen Chen,et al.  Repeatered Bidirectional 10 Gb/s–240 km Fiber Transmission Experiment , 1996 .

[9]  John E. Sipe,et al.  Optical properties of photosensitive fiber phase gratings , 1993 .

[10]  Raman Kashyap,et al.  Eight wavelength/spl times/10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth, 1.3 metre long, super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds , 1996, Proceedings of European Conference on Optical Communication.

[11]  S. G. Grubb 1.3 µm Cascaded Raman Amplifiers , 1995 .

[12]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[13]  C. R. Giles,et al.  Single-frequency 1559-nm erbium-doped fiber laser pumped by a 650-nm semiconductor laser. , 1997, Applied optics.

[14]  R. M. Derosier,et al.  Four-photon mixing and high-speed WDM systems , 1995 .

[15]  T. Strasser,et al.  High sensitivity 1.3 [micro sign]m optically preamplified receiver using Raman amplification , 1996 .

[16]  L. Hamon,et al.  Experimental investigation of the gain flatness characteristics for 1.55 /spl mu/m erbium-doped fluoride fiber amplifiers , 1994, IEEE Photonics Technology Letters.

[17]  A.A.M. Saleh,et al.  Modeling of gain in erbium-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[18]  R. Giles,et al.  Fiber-grating sensor for wavelength tracking in single-fiber WDM access PONs , 1997, IEEE Photonics Technology Letters.

[19]  H. Poignant,et al.  Programmable fiber grating based wavelength demultiplexer , 1996, Optical Fiber Communications, OFC..

[20]  M. Andrejco,et al.  Options for gain-flattened erbium-doped fiber amplifiers , 1997, Proceedings of Optical Fiber Communication Conference (.

[21]  J. T. Kringlebotn,et al.  Efficient diode-pumped single-frequency erbium:ytterbium fiber laser , 1993, IEEE Photonics Technology Letters.

[22]  K. Hill,et al.  Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication , 1978 .

[23]  R. Jopson,et al.  Polarisation-independent phase conjugation of lightwave signals , 1993 .

[24]  R. S. Vodhanel,et al.  National-Scale WDM Networking Demonstration by the MONET Consortium , 1997 .

[25]  A Yariv,et al.  Compensation for channel dispersion by nonlinear optical phase conjugation. , 1979, Optics letters.

[26]  C. R. Giles,et al.  Reflection-induced changes in the optical spectra of 980-nm QW lasers , 1994, IEEE Photonics Technology Letters.

[27]  Ashish Madhukar Vengsarkar,et al.  Erbium-Doped Fiber Amplifier Flattened Beyond 40 nm Using Long-Period Grating , 1997 .

[28]  Poladian Graphical and WKB analysis of nonuniform Bragg gratings. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  T. Erdogan,et al.  Four channel fibre grating demultiplexer , 1994 .

[30]  R.W. Tkach,et al.  Equalization in amplified WDM lightwave transmission systems , 1992, IEEE Photonics Technology Letters.

[31]  J.E.J. Alphonsus,et al.  Unrepeatered WDM transmission experiment with 8 channels of 10 Gb/s over 352 km , 1996, IEEE Photonics Technology Letters.

[32]  J. Judkins,et al.  Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter , 1997, IEEE Photonics Technology Letters.

[33]  M. Yamada,et al.  Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. , 1987, Applied optics.

[34]  R. J. Nuyts,et al.  Dispersion equalization of a 10 Gb/s repeatered transmission system using dispersion compensating fibers , 1997 .

[35]  Charles Howard Henry,et al.  Silica based Mach-Zehnder add-drop filter fabricated with UV induced gratings , 1996 .

[36]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[37]  B. Ventrudo,et al.  Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings , 1994 .

[38]  R. Kashyap Photosensitive Optical Fibers: Devices and Applications , 1994 .

[39]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[40]  J. Zyskind Performance issues in optically amplified systems and networks , 1997, Proceedings of Optical Fiber Communication Conference (.

[41]  C. Elachi,et al.  Waves in active and passive periodic structures: A review , 1976, Proceedings of the IEEE.

[42]  F. Forghieri,et al.  Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels , 1994, IEEE Photonics Technology Letters.

[43]  C.R. Giles,et al.  Access PON using downstream 1550-nm WDM routing and upstream 1300-nm SCMA combining through a fiber-grating router , 1996, IEEE Photonics Technology Letters.

[44]  A. F. Elrefaie,et al.  Performance degradations due to laser and optical-filter misalignments in WDM systems , 1995 .

[45]  John Lehrer Zyskind,et al.  Transmission at 2.5 Gbit/s over 654 km using an erbium-doped fibre grating laser source , 1993 .

[46]  Steven K. Korotky,et al.  529 km unrepeatered transmission at 2.488 GBit/s using dispersion compensation, forward error correction, and remote post- and pre-amplifiers pumped by diode-pumped Raman lasers , 1995 .

[47]  F. Ouellette Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. , 1987, Optics letters.

[48]  Steven K. Korotky,et al.  2.488-Gb/s Unrepeatered Transmission over 529 km using Remotely Pumped Post- and Pre-Amplifiers, Forward Error Correction, and Dispersion Compensation , 1995 .

[49]  Takashi Mizuochi,et al.  All-fiber add/drop multiplexing of 6/spl times/10 Gbit/s using a photo-induced Bragg grating filter for WDM networks , 1996, Optical Fiber Communications, OFC..

[50]  N. S. Bergano,et al.  Long-period fiber-grating-based gain equalizers. , 1996, Optics letters.

[51]  Raman Kashyap,et al.  Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating , 1993 .