ShengBTE: A solver of the Boltzmann transport equation for phonons

Abstract ShengBTE is a software package for computing the lattice thermal conductivity of crystalline bulk materials and nanowires with diffusive boundary conditions. It is based on a full iterative solution to the Boltzmann transport equation. Its main inputs are sets of second- and third-order interatomic force constants, which can be calculated using third-party ab-initio packages. Dirac delta distributions arising from conservation of energy are approximated by Gaussian functions. A locally adaptive algorithm is used to determine each process-specific broadening parameter, which renders the method fully parameter free. The code is free software, written in Fortran and parallelized using MPI. A complementary Python script to help compute third-order interatomic force constants from a minimum number of ab-initio calculations, using a real-space finite-difference approach, is also publicly available for download. Here we discuss the design and implementation of both pieces of software and present results for three example systems: Si, InAs and lonsdaleite. Program summary Program title: ShengBTE Catalogue identifier: AESL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 292 052 No. of bytes in distributed program, including test data, etc.: 1 989 781 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Non-specific. Operating system: Unix/Linux. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: Up to several GB Classification: 7.9. External routines: LAPACK, MPI, spglib ( http://spglib.sourceforge.net/ ) Nature of problem: Calculation of thermal conductivity and related quantities, determination of scattering rates for allowed three-phonon processes Solution method: Iterative solution, locally adaptive Gaussian broadening Running time: Up to several hours on several tens of processors

[1]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[2]  Michael Berglund,et al.  Isotopic compositions of the elements 2009 (IUPAC Technical Report) , 2011 .

[3]  T. L. Reinecke,et al.  Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study , 2013 .

[4]  M. Lumsden,et al.  Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.

[5]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[6]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[7]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[8]  N. Spaldin,et al.  A beginner's guide to the modern theory of polarization , 2012, 1202.1831.

[9]  E. Varesi,et al.  The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories , 2011, IEEE Transactions on Nanotechnology.

[10]  Amrit De,et al.  Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Yi Zhang,et al.  Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. , 2009, Physical review letters.

[13]  Lucas Lindsay,et al.  Three-phonon phase space and lattice thermal conductivity in semiconductors , 2008 .

[14]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[15]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[16]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[17]  Lian-Tuu Yeh,et al.  Thermal management of microelectronic equipment : heat transfer theory, analysis methods, and design practices , 2002 .

[18]  Michael S. Shur,et al.  Handbook Series on Semiconductor Parameters, Vol. 2: Ternary and Quaternary Iii-V Compounds , 1999 .

[19]  R. G. Chambers,et al.  The conductivity of thin wires in a magnetic field , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  J. Warren,et al.  Lattice Dynamics of Diamond , 1967 .

[21]  Amelia Carolina Sparavigna,et al.  On the isotope effect in thermal conductivity of silicon , 2004 .

[22]  A. D. Corso,et al.  Ab initio phonon dispersions of transition and noble metals: effects of the exchange and correlation functional , 2013 .

[23]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[24]  P. B. Allen Improved Callaway model for lattice thermal conductivity , 2013, 1308.3269.

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  F. P. Bundy,et al.  Hexagonal Diamond—A New Form of Carbon , 1967 .

[27]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[28]  R. Bowers,et al.  InAs and InSb as Thermoelectric Materials , 1959 .

[29]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[30]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[31]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[32]  S. Shang,et al.  A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[34]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .

[35]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[36]  A. D. Corso,et al.  Phonon dispersions: Performance of the generalized gradient approximation , 1999 .

[37]  A. V. Gusev,et al.  Thermal conductivity of isotopically enriched 28Si: revisited , 2004 .

[38]  Amelia Carolina Sparavigna,et al.  Heat transport in dielectric solids with diamond structure , 1997 .

[39]  Jun Tsuchiya,et al.  Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. , 2013, Physical review letters.

[40]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[41]  D. Broido,et al.  Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.

[42]  Amelia Carolina Sparavigna,et al.  An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .

[43]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[44]  Xiaoli Tang,et al.  Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .

[45]  S. Sahli,et al.  DIAMOND POLYTYPES IN THE CHEMICAL VAPOR DEPOSITED DIAMOND FILMS , 1995 .

[46]  R. W. Henn,et al.  Thermal conductivity of isotopically enriched silicon , 2000 .

[47]  Allan,et al.  Interatomic force constants from first principles: The case of alpha -quartz. , 1994, Physical review. B, Condensed matter.

[48]  Amelia Carolina Sparavigna,et al.  Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.

[49]  G. Le Guillou,et al.  Phonon Conductivity of InAs , 1972 .

[50]  Nicola Marzari,et al.  Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. , 2012, Nano letters.

[51]  N. Mingo,et al.  Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.

[52]  Michael S. Shur,et al.  Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb , 1996 .

[53]  Natalio Mingo,et al.  Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles , 2013 .

[54]  Natalio Mingo,et al.  Thermal conductivity of diamond nanowires from first principles , 2012 .

[55]  CLIFFORD FRONDEL,et al.  Lonsdaleite, a Hexagonal Polymorph of Diamond , 1967, Nature.

[56]  Lucas Lindsay,et al.  Ab Initio Thermal Transport , 2014 .

[57]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[58]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[59]  Feiyu Kang,et al.  Advanced materials science and engineering of carbon , 2014 .

[60]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[61]  C. Uher,et al.  A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .

[62]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[63]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[64]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[65]  D. Frost,et al.  Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core , 2011, Proceedings of the National Academy of Sciences.

[66]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .