ShengBTE: A solver of the Boltzmann transport equation for phonons
暂无分享,去创建一个
Wu Li | Jesús Carrete | Natalio Mingo | Nebil A. Katcho | Wu Li | N. Mingo | J. Carrete | N. A. Katcho
[1] M. Dresselhaus,et al. Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .
[2] Michael Berglund,et al. Isotopic compositions of the elements 2009 (IUPAC Technical Report) , 2011 .
[3] T. L. Reinecke,et al. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study , 2013 .
[4] M. Lumsden,et al. Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.
[5] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[6] Francesco Mauri,et al. Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.
[7] Marco Buongiorno Nardelli,et al. The high-throughput highway to computational materials design. , 2013, Nature materials.
[8] N. Spaldin,et al. A beginner's guide to the modern theory of polarization , 2012, 1202.1831.
[9] E. Varesi,et al. The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories , 2011, IEEE Transactions on Nanotechnology.
[10] Amrit De,et al. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[11] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[12] Yi Zhang,et al. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. , 2009, Physical review letters.
[13] Lucas Lindsay,et al. Three-phonon phase space and lattice thermal conductivity in semiconductors , 2008 .
[14] Boris Kozinsky,et al. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.
[15] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .
[16] J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .
[17] Lian-Tuu Yeh,et al. Thermal management of microelectronic equipment : heat transfer theory, analysis methods, and design practices , 2002 .
[18] Michael S. Shur,et al. Handbook Series on Semiconductor Parameters, Vol. 2: Ternary and Quaternary Iii-V Compounds , 1999 .
[19] R. G. Chambers,et al. The conductivity of thin wires in a magnetic field , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] J. Warren,et al. Lattice Dynamics of Diamond , 1967 .
[21] Amelia Carolina Sparavigna,et al. On the isotope effect in thermal conductivity of silicon , 2004 .
[22] A. D. Corso,et al. Ab initio phonon dispersions of transition and noble metals: effects of the exchange and correlation functional , 2013 .
[23] Gernot Deinzer,et al. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .
[24] P. B. Allen. Improved Callaway model for lattice thermal conductivity , 2013, 1308.3269.
[25] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[26] F. P. Bundy,et al. Hexagonal Diamond—A New Form of Carbon , 1967 .
[27] Stefano Curtarolo,et al. High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.
[28] R. Bowers,et al. InAs and InSb as Thermoelectric Materials , 1959 .
[29] Harold T. Stokes,et al. Method to extract anharmonic force constants from first principles calculations , 2008 .
[30] Junichiro Shiomi,et al. Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .
[31] S. Tamura,et al. Isotope scattering of dispersive phonons in Ge , 1983 .
[32] S. Shang,et al. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[33] T. L. Reinecke,et al. Ab initio thermal transport in compound semiconductors , 2013 .
[34] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .
[35] David Broido,et al. Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .
[36] A. D. Corso,et al. Phonon dispersions: Performance of the generalized gradient approximation , 1999 .
[37] A. V. Gusev,et al. Thermal conductivity of isotopically enriched 28Si: revisited , 2004 .
[38] Amelia Carolina Sparavigna,et al. Heat transport in dielectric solids with diamond structure , 1997 .
[39] Jun Tsuchiya,et al. Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. , 2013, Physical review letters.
[40] Isao Tanaka,et al. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .
[41] D. Broido,et al. Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.
[42] Amelia Carolina Sparavigna,et al. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .
[43] N. Mingo,et al. Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .
[44] Xiaoli Tang,et al. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .
[45] S. Sahli,et al. DIAMOND POLYTYPES IN THE CHEMICAL VAPOR DEPOSITED DIAMOND FILMS , 1995 .
[46] R. W. Henn,et al. Thermal conductivity of isotopically enriched silicon , 2000 .
[47] Allan,et al. Interatomic force constants from first principles: The case of alpha -quartz. , 1994, Physical review. B, Condensed matter.
[48] Amelia Carolina Sparavigna,et al. Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.
[49] G. Le Guillou,et al. Phonon Conductivity of InAs , 1972 .
[50] Nicola Marzari,et al. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. , 2012, Nano letters.
[51] N. Mingo,et al. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.
[52] Michael S. Shur,et al. Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb , 1996 .
[53] Natalio Mingo,et al. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles , 2013 .
[54] Natalio Mingo,et al. Thermal conductivity of diamond nanowires from first principles , 2012 .
[55] CLIFFORD FRONDEL,et al. Lonsdaleite, a Hexagonal Polymorph of Diamond , 1967, Nature.
[56] Lucas Lindsay,et al. Ab Initio Thermal Transport , 2014 .
[57] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[58] R. Peierls,et al. Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .
[59] Feiyu Kang,et al. Advanced materials science and engineering of carbon , 2014 .
[60] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[61] C. Uher,et al. A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .
[62] John Ziman,et al. Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .
[63] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[64] Jianjun Dong,et al. Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.
[65] D. Frost,et al. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core , 2011, Proceedings of the National Academy of Sciences.
[66] Richard M. Martin,et al. Microscopic theory of force constants in the adiabatic approximation , 1970 .