Structural basis of mitochondrial membrane bending by the I–II–III2–IV2 supercomplex

[1]  A. Amunts,et al.  Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements , 2022, Nature Communications.

[2]  M. Maldonado,et al.  Structures of Tetrahymena’s respiratory chain reveal the diversity of eukaryotic core metabolism , 2022, Science.

[3]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[4]  Bart M. H. Bruininks,et al.  Martini 3: a general purpose force field for coarse-grained molecular dynamics , 2021, Nature Methods.

[5]  A. Amunts,et al.  ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria , 2021, Nature Communications.

[6]  F. Fontanesi,et al.  Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1 , 2020, Frontiers in Cell and Developmental Biology.

[7]  W. Kühlbrandt,et al.  A ferredoxin bridge connects the two arms of plant mitochondrial complex I , 2020, bioRxiv.

[8]  A. Amunts,et al.  Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization , 2020, Nature Communications.

[9]  F. Fontanesi,et al.  Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance , 2020, EMBO reports.

[10]  L. Sazanov,et al.  Cryo-EM structure of the entire mammalian F-type ATP synthase , 2020, Nature Structural & Molecular Biology.

[11]  A. Amunts,et al.  Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation , 2020, eLife.

[12]  D. Stroud,et al.  The road to the structure of the mitochondrial respiratory chain supercomplex , 2020, Biochemical Society transactions.

[13]  A. Amunts,et al.  Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly , 2020, Nature Plants.

[14]  N. Pfanner,et al.  Shaping the mitochondrial inner membrane in health and disease , 2020, Journal of internal medicine.

[15]  A. Amunts,et al.  Structure of a mitochondrial ATP synthase with bound native cardiolipin , 2019, eLife.

[16]  A. Reichert,et al.  Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent , 2019, The EMBO journal.

[17]  W. Kühlbrandt,et al.  Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows , 2019, Proceedings of the National Academy of Sciences.

[18]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[19]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[20]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[21]  Maojun Yang,et al.  Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2 , 2017, Cell.

[22]  J. Neuzil,et al.  Mitochondrial Complex II: At the Crossroads. , 2017, Trends in biochemical sciences.

[23]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[24]  J. Briggs,et al.  Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging , 2017, Journal of structural biology.

[25]  Maojun Yang,et al.  Structure of Mammalian Respiratory Supercomplex I1III2IV1 , 2016, Cell.

[26]  Jianlin Lei,et al.  The architecture of the mammalian respirasome , 2016, Nature.

[27]  J. A. Letts,et al.  The architecture of respiratory supercomplexes , 2016, Nature.

[28]  A. Frangakis,et al.  Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria , 2016, Proceedings of the National Academy of Sciences.

[29]  J. Auwerx,et al.  Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) , 2016, Current protocols in mouse biology.

[30]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[31]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[32]  H. Kirchhoff Diffusion of molecules and macromolecules in thylakoid membranes. , 2014, Biochimica et biophysica acta.

[33]  C. López-Otín,et al.  Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain , 2013, Science.

[34]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[35]  W. Kühlbrandt,et al.  Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 , 2011, The EMBO journal.

[36]  W. Kühlbrandt,et al.  Macromolecular organization of ATP synthase and complex I in whole mitochondria , 2011, Proceedings of the National Academy of Sciences.

[37]  Akhil B. Vaidya,et al.  Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila , 2010, PLoS biology.

[38]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[39]  E. Schon,et al.  Heavy breathing: energy conversion by mitochondrial respiratory supercomplexes. , 2009, Cell metabolism.

[40]  J. Enríquez,et al.  Respiratory active mitochondrial supercomplexes. , 2008, Molecular cell.

[41]  Shaoqing Yang,et al.  Effect of mutations in the cytochrome b ef loop on the electron-transfer reactions of the Rieske iron-sulfur protein in the cytochrome bc1 complex. , 2007, Biochemistry.

[42]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[43]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[44]  Z. Rao,et al.  Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II , 2005, Cell.

[45]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[46]  G. Farquhar,et al.  Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. , 2003, Biochimica et biophysica acta.

[47]  L. Esser,et al.  Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. , 2003, Biochemistry.

[48]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[49]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[50]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[51]  C. Hägerhäll,et al.  Succinate: quinone oxidoreductases. Variations on a conserved theme. , 1997, Biochimica et biophysica acta.

[52]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[53]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[54]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[55]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[56]  R. Allen,et al.  An investigation of mitochondrial inner membranes by rapid-freeze deep- etch techniques , 1989, The Journal of cell biology.

[57]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[58]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .