Spontaneous neurotransmission: an independent pathway for neuronal signaling?

Recent findings suggest that spontaneous neurotransmission is a bona fide pathway for interneuronal signaling that operates independent of evoked transmission via distinct presynaptic as well as postsynaptic substrates. This article will examine the role of spontaneous release events in neuronal signaling by focusing on aspects that distinguish this process from evoked neurotransmission, and evaluate the mechanisms that may underlie this segregation.

[1]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[2]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[3]  R. Miledi,et al.  Strontium and quantal release of transmitter at the neuromuscular junction , 1969, The Journal of physiology.

[4]  Xinran Liu,et al.  Acute Dynamin Inhibition Dissects Synaptic Vesicle Recycling Pathways That Drive Spontaneous and Evoked Neurotransmission , 2010, The Journal of Neuroscience.

[5]  Lu Chen,et al.  Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity , 2008, Neuron.

[6]  M. Segal,et al.  Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Glitsch Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release? , 2008, Cell calcium.

[8]  E. Kavalali,et al.  Leaky synapses: Regulation of spontaneous neurotransmission in central synapses , 2009, Neuroscience.

[9]  R. Jahn,et al.  Synaptic Vesicles Are Constitutively Active Fusion Machines that Function Independently of Ca2+ , 2008, Current Biology.

[10]  D. Kullmann,et al.  NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses , 2004, The Journal of Neuroscience.

[11]  Xinran Liu,et al.  Cholesterol‐dependent balance between evoked and spontaneous synaptic vesicle recycling , 2007, The Journal of physiology.

[12]  Yildirim Sara,et al.  Development of Vesicle Pools during Maturation of Hippocampal Synapses , 2002, The Journal of Neuroscience.

[13]  M. Frerking,et al.  Are some minis multiquantal? , 1997, Journal of neurophysiology.

[14]  K. Moulder,et al.  Spontaneous and Evoked Glutamate Release Activates Two Populations of NMDA Receptors with Limited Overlap , 2008, The Journal of Neuroscience.

[15]  E. Kavalali,et al.  NMDA receptor activation by spontaneous glutamatergic neurotransmission. , 2009, Journal of neurophysiology.

[16]  S. Duan,et al.  Activity-Induced Rapid Synaptic Maturation Mediated by Presynaptic Cdc42 Signaling , 2006, Neuron.

[17]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[18]  Jurgen Klingauf,et al.  Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool , 2007, Nature Neuroscience.

[19]  Michael D. Ehlers,et al.  Metaplasticity at Single Glutamatergic Synapses , 2010, Neuron.

[20]  W. Kloot Spontaneous and uniquantal‐evoked endplate currents in normal frogs are indistinguishable. , 1996 .

[21]  Mark J. Wall,et al.  Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse , 1998, Nature Neuroscience.

[22]  B. Bean,et al.  Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[24]  D. Zenisek Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals , 2008, Proceedings of the National Academy of Sciences.

[25]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[26]  J. Molgó,et al.  Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[28]  O. Prange,et al.  Correlation of Miniature Synaptic Activity and Evoked Release Probability in Cultures of Cortical Neurons , 1999, The Journal of Neuroscience.

[29]  T. Tsumoto,et al.  Actions of brain‐derived neurotrophic factor on evoked and spontaneous EPSCs dissociate with maturation of neurones cultured from rat visual cortex , 2000, The Journal of physiology.

[30]  E. Adrian The Mechanism of Nervous Action: Electrical Studies of the Neurone , 1932 .

[31]  L. Donald Partridge,et al.  Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis , 2002, Nature Neuroscience.

[32]  E. Kavalali,et al.  Seeking a function for spontaneous neurotransmission , 2006, Nature Neuroscience.

[33]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[34]  E. D. Adrian,et al.  The Mechanism of Nervous Action , 1932 .

[35]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[36]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[37]  E. Kavalali,et al.  Activity-Dependent Augmentation of Spontaneous Neurotransmission during Endoplasmic Reticulum Stress , 2010, The Journal of Neuroscience.

[38]  A. Marty,et al.  Presynaptic Miniature Gabaergic Currents in Developing Interneurons , 2010, Neuron.

[39]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[40]  T. Südhof,et al.  Structural Determinants of Synaptobrevin 2 Function in Synaptic Vesicle Fusion , 2006, The Journal of Neuroscience.

[41]  M. Kreft,et al.  Subnanometer Fusion Pores in Spontaneous Exocytosis of Peptidergic Vesicles , 2007, The Journal of Neuroscience.

[42]  J. Hablitz,et al.  GABA Vesicles at Synapses: Are There 2 Distinct Pools? , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[43]  S. Thesleff,et al.  A study of supersensitivity in denervated mammalian skeletal muscle , 1959, The Journal of physiology.

[44]  Jeffrey S. Diamond,et al.  Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC , 1995, Neuron.

[45]  W. Betz,et al.  Intraterminal Ca2+ and Spontaneous Transmitter Release at the Frog Neuromuscular Junction , 2001 .

[46]  T. Südhof,et al.  Synaptotagmin-12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release , 2007, The Journal of cell biology.

[47]  E. Schuman,et al.  Partitioning the Synaptic Landscape: Distinct Microdomains for Spontaneous and Spike-Triggered Neurotransmission , 2009, Science Signaling.

[48]  Xinran Liu,et al.  An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission , 2005, Neuron.

[49]  S. M. Highstein,et al.  Fatigue and recovery of transmission at the Mauthner fiber-giant fiber synapse of the hatchetfish , 1975, Brain Research.

[50]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[51]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[52]  C. Jahr,et al.  Ectopic Release of Synaptic Vesicles , 2003, Neuron.

[53]  B. Katz The release of neural transmitter substances , 1969 .

[54]  M. Charlton,et al.  Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions , 2006, The Journal of physiology.

[55]  T. Südhof,et al.  Cell biology of Ca 2+ -triggered exocytosis , 2010 .

[56]  D. Paré,et al.  Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. , 1997, Journal of neurophysiology.

[57]  L. Niels Cornelisse,et al.  Doc2b Is a High-affinity Ca 2+ Sensor for Spontaneous Neurotransmitter Release , 2022 .

[58]  K. Reim,et al.  Opposing functions of two sub‐domains of the SNARE‐complex in neurotransmission , 2010, The EMBO journal.

[59]  Roberto Malinow,et al.  Measuring the impact of probabilistic transmission on neuronal output , 1993, Neuron.

[60]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[61]  S. Vijayaraghavan,et al.  Modulation of Presynaptic Store Calcium Induces Release of Glutamate and Postsynaptic Firing , 2003, Neuron.

[62]  William J Tyler,et al.  Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones , 2003, The Journal of physiology.

[63]  J. Sun,et al.  Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse , 2002, Nature.

[64]  Wade G. Regehr,et al.  Quantal events shape cerebellar interneuron firing , 2002, Nature Neuroscience.

[65]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[66]  A. Bouron Modulation of spontaneous quantal release of neurotransmitters in the hippocampus , 2001, Progress in Neurobiology.

[67]  C. Stevens,et al.  Reversal of synaptic vesicle docking at central synapses , 1999, Nature Neuroscience.

[68]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[69]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[70]  B. Walmsley,et al.  Counting quanta: Direct measurements of transmitter release at a central synapse , 1995, Neuron.

[71]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[72]  E. Schuman,et al.  Postsynaptic Decoding of Neural Activity: eEF2 as a Biochemical Sensor Coupling Miniature Synaptic Transmission to Local Protein Synthesis , 2007, Neuron.

[73]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[74]  Timothy H Murphy,et al.  Miniature Transmitter Release: Accident of Nature or Careful Design? , 2003, Science's STKE.

[75]  H. Meiri,et al.  The difference in shape of spontaneous and uniquantal evoked synaptic potentials in frog muscle. , 1995, The Journal of physiology.

[76]  C. A. Frank,et al.  Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis , 2006, Neuron.

[77]  T. Südhof,et al.  Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. , 2007, Journal of neurophysiology.

[78]  Jian Xu,et al.  Two Pathways of Synaptic Vesicle Retrieval Revealed by Single-Vesicle Imaging , 2009, Neuron.

[79]  Yunfeng Hua,et al.  A common origin of synaptic vesicles undergoing evoked and spontaneous fusion , 2010, Nature Neuroscience.

[80]  Patrick E. Rothwell Parsing Spontaneous and Evoked Neurotransmission on Both Sides of the Synapse , 2010, The Journal of Neuroscience.

[81]  K. Ikeda,et al.  Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. , 1999, Journal of neurophysiology.

[82]  J. Hablitz,et al.  Kainate Modulates Presynaptic GABA Release from Two Vesicle Pools , 2008, The Journal of Neuroscience.

[83]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[84]  J. Burrone,et al.  A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse , 2009, Nature Neuroscience.

[85]  E. Kavalali,et al.  Activity-Dependent Suppression of Miniature Neurotransmission through the Regulation of DNA Methylation , 2008, The Journal of Neuroscience.

[86]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[87]  T. Kuner,et al.  Postsynaptic Neuroligin1 regulates presynaptic maturation , 2009, Proceedings of the National Academy of Sciences.

[88]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[89]  Silvio O Rizzoli,et al.  The same synaptic vesicles drive active and spontaneous release , 2010, Nature Neuroscience.

[90]  R. Burgess,et al.  Distinct Requirements for Evoked and Spontaneous Release of Neurotransmitter Are Revealed by Mutations in theDrosophila Gene neuronal-synaptobrevin , 1998, The Journal of Neuroscience.

[91]  J. Hubbard,et al.  On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals , 1968, The Journal of physiology.

[92]  A. Marty,et al.  Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients , 2000, Nature Neuroscience.

[93]  Y. Sara,et al.  Phorbol Esters Target the Activity-Dependent Recycling Pool and Spare Spontaneous Vesicle Recycling , 2005, The Journal of Neuroscience.

[94]  M. Glitsch Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices. , 2006, Journal of neurophysiology.

[95]  R. Nicoll,et al.  Bidirectional Control of Quantal Size by Synaptic Activity in the Hippocampus , 1996, Science.

[96]  M. Charlton,et al.  Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. , 1998, Journal of neurophysiology.

[97]  N. Fatkullin,et al.  Localization of active zones , 1995, Nature.

[98]  Maryann E Martone,et al.  Evidence for Ectopic Neurotransmission at a Neuronal Synapse , 2005, Science.