Anisotropic Elliptic PDEs for Feature Classification

The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.

[1]  Hong Qin,et al.  Admissible Diffusion Wavelets and Their Applications in Space-Frequency Processing , 2013, IEEE Transactions on Visualization and Computer Graphics.

[2]  Shi-Min Hu,et al.  Robust Feature Classification and Editing , 2007, IEEE Transactions on Visualization and Computer Graphics.

[3]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[4]  Dirk Roose,et al.  Detection of closed sharp edges in point clouds using normal estimation and graph theory , 2007, Comput. Aided Des..

[5]  Charlie C. L. Wang,et al.  Bilateral recovering of sharp edges on feature-insensitive sampled meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[7]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[8]  Gerald E. Farin,et al.  Crest lines for surface segmentation and flattening , 2004, IEEE Transactions on Visualization and Computer Graphics.

[9]  Timothy A. Davis,et al.  Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves , 2009, TOMS.

[10]  Youyi Zheng,et al.  Mesh Decomposition with Cross‐Boundary Brushes , 2010, Comput. Graph. Forum.

[11]  Meng Liu,et al.  Efficient Mean‐shift Clustering Using Gaussian KD‐Tree , 2010, Comput. Graph. Forum.

[12]  Shengfa Wang,et al.  Multi-scale anisotropic heat diffusion based on normal-driven shape representation , 2011, The Visual Computer.

[13]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[14]  Hans-Peter Seidel,et al.  Feature sensitive mesh segmentation with mean shift , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[15]  Hans-Peter Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, ACM Trans. Graph..

[16]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[17]  Ralph R. Martin,et al.  Rapid and effective segmentation of 3D models using random walks , 2009, Comput. Aided Geom. Des..

[18]  Charlie C. L. Wang,et al.  Extracting Manifold and Feature-Enhanced Mesh Surfaces From Binary Volumes , 2008, J. Comput. Inf. Sci. Eng..

[19]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[20]  Jianfei Cai,et al.  Interactive Mesh Cutting Using Constrained Random Walks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[22]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[23]  Pengfei Xu,et al.  Mesh Segmentation with Concavity-Aware Fields , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Hong Qin,et al.  Continuous and discrete Mexican hat wavelet transforms on manifolds , 2012, Graph. Model..

[25]  Kwan H. Lee,et al.  Feature detection of triangular meshes based on tensor voting theory , 2009, Comput. Aided Des..

[26]  Hao Zhang,et al.  Segmentation of 3D meshes through spectral clustering , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[27]  Ligang Liu,et al.  Easy Mesh Cutting , 2006, Comput. Graph. Forum.

[28]  Konrad Polthier,et al.  Smooth feature lines on surface meshes , 2005, SGP '05.

[29]  Daniel Cohen-Or,et al.  Dynamic harmonic fields for surface processing , 2009, Comput. Graph..

[30]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[31]  Kanti V. Mardia,et al.  Ridge Curves and Shape Analysis , 1996, BMVC.

[32]  Yizhou Yu,et al.  Feature matching and deformation for texture synthesis , 2004, ACM Trans. Graph..

[33]  TalAyellet,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003 .

[34]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[35]  G. Medioni,et al.  Tensor Voting : Theory and Applications , 2000 .

[36]  Jianfei Cai,et al.  Variational mesh decomposition , 2012, TOGS.

[37]  Dong-Ming Yan,et al.  Variational mesh segmentation via quadric surface fitting , 2012, Comput. Aided Des..

[38]  Luca Di Angelo,et al.  C1 continuities detection in triangular meshes , 2010, Comput. Aided Des..

[39]  Shengfa Wang,et al.  Diffusion Tensor Weighted Harmonic Fields for Feature Classification , 2011, PG.

[40]  Jarek Rossignac,et al.  Blowing Bubbles for Multi-Scale Analysis and Decomposition of Triangle Meshes , 2003, Algorithmica.

[41]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[42]  Guillaume Lavoué,et al.  A comparative study of existing metrics for 3D-mesh segmentation evaluation , 2010, The Visual Computer.

[43]  Hans-Peter Seidel,et al.  Learning Line Features in 3D Geometry , 2011, Comput. Graph. Forum.

[44]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[45]  E. V. Anoshkina,et al.  Ridges, Ravines and Singularities , 1997 .

[46]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[47]  Joonki Paik,et al.  Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes , 2002, Graph. Model..

[48]  Hong Qin,et al.  Efficient Computation of Scale-Space Features for Deformable Shape Correspondences , 2010, ECCV.

[49]  Leif Kobbelt,et al.  Extraction of feature lines on triangulated surfaces using morphological operators , 2000 .

[50]  Atilla Baskurt,et al.  A new CAD mesh segmentation method, based on curvature tensor analysis , 2005, Comput. Aided Des..