Algebraic measures of entanglement

We study the rank of a general tensor $u$ in a tensor product $H_1\ot...\ot H_k$. The rank of $u$ is the minimal number $p$ of pure states $v_1,...,v_p$ such that $u$ is a linear combination of the $v_j$'s. This rank is an algebraic measure of the degree of entanglement of $u$. Motivated by quantum computation, we completely describe the rank of an arbitrary tensor in $(\C^2)^{\ot 3}$ and give normal forms for tensor states up to local unitary transformations. We also obtain partial results for $(\C^2)^{\ot 4}$; in particular, we show that the maximal rank of a tensor in $(\C^2)^{\ot 4}$ is equal to 4.

[1]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[2]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[3]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[5]  V. Strassen Gaussian elimination is not optimal , 1969 .

[6]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[7]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.