A Markovian event-based framework for stochastic spiking neural networks

In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

[1]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[2]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[3]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[4]  T. Makino A Discrete-Event Neural Network Simulator for General Neuron Models , 2003, Neural Computing & Applications.

[5]  Marian Stamp Dawkins,et al.  The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[6]  Olivier Rochel Une approche événementielle pour la modélisation et la simulation de réseaux de neurones impulsionnels , 2004 .

[7]  T Turova Neural networks through the hourglass. , 2000, Bio Systems.

[8]  B. Cessac A discrete time neural network model with spiking neurons , 2007, Journal of mathematical biology.

[9]  A. Holden Models of the stochastic activity of neurones , 1976 .

[10]  Ronan G. Reilly,et al.  Efficient event-driven simulation of spiking neural networks , 2002 .

[11]  M. Cottrell,et al.  Use of an hourglass model in neuronal coding , 2000, Journal of Applied Probability.

[12]  Philippe Robert,et al.  Fluid Limits for Processor-Sharing Queues with Impatience , 2008, Math. Oper. Res..

[13]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  M. Goldman ON THE FIRST PASSAGE OF THE INTEGRATED WIENER PROCESS , 1971 .

[15]  Alain Destexhe,et al.  Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics for Event-Driven Simulation Strategies , 2006, Neural Computation.

[16]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[17]  Wulfram Gerstner,et al.  Spiking Neuron Models: An Introduction , 2002 .

[18]  Michele Giugliano,et al.  Event-Driven Simulation of Spiking Neurons with Stochastic Dynamics , 2003, Neural Computation.

[19]  Aimé Lachal Sur la distribution de certaines fonctionnelles de l'intégrale du mouvement Brownien avec dérives parabolique et cubique , 1996 .

[20]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[21]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[22]  Arun V. Holden,et al.  Stochastic Fluctuations in Membrane Potential , 1976 .

[23]  H. Tuckwell Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure , 1988 .

[24]  Simon J Thorpe,et al.  SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons , 2003, Network.

[25]  H. McKean A winding problem for a resonator driven by a white noise , 1962 .

[26]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[27]  Dominique Martinez,et al.  An event-driven framework for the simulation of networks of spiking neurons , 2003, ESANN.

[28]  Jonathan Touboul,et al.  Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons , 2008, SIAM J. Appl. Math..

[29]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[30]  Philippe Robert,et al.  Analysis of some Networks with Interaction , 1994 .

[31]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[32]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[33]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.

[34]  Lloyd Watts,et al.  Event-Driven Simulation of Networks of Spiking Neurons , 1993, NIPS.

[35]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[36]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[37]  B Cessac,et al.  A discrete time neural network model with spiking neurons: II: Dynamics with noise , 2010, Journal of mathematical biology.

[38]  H. Plesser Aspects of Signal Processing in Noisy Neurons , 2001 .

[39]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[40]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[41]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[42]  N. B,et al.  Firing Frequency of Leaky Integrate-and-fire Neurons with Synaptic Current Dynamics , 1998 .

[43]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[44]  Romain Brette,et al.  Exact Simulation of Integrate-and-Fire Models with Synaptic Conductances , 2006, Neural Computation.

[45]  J. Hammersley,et al.  Diffusion Processes and Related Topics in Biology , 1977 .

[46]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[47]  Marie Cottrell Mathematical analysis of a neural network with inhibitory coupling , 1992 .

[48]  Edward C. van der Meulen,et al.  Synchronization of firing times in a stochastic neural network model with excitatory connections , 1994 .

[49]  Romain Brette,et al.  Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity , 2005 .

[50]  Andrew D. Brown,et al.  Discrete simulation of large aggregates of neurons , 2002, Neurocomputing.

[51]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[52]  Dominique Martinez,et al.  Event-Driven Simulations of Nonlinear Integrate-and-Fire Neurons , 2007, Neural Computation.

[53]  N. Brunel,et al.  Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. , 1998, Journal of theoretical biology.

[54]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[55]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[56]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[57]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[58]  Søren Asmussen,et al.  Stationarity properties of neural networks , 1998 .

[59]  Romain Brette,et al.  Brian: A Simulator for Spiking Neural Networks in Python , 2008, Frontiers Neuroinformatics.

[60]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[61]  A. Lachal Sur le premier instant de passage de l'intégrale du mouvement brownien , 1991 .

[62]  J. Touboul,et al.  A characterization of the first hitting time of double integral processes to curved boundaries , 2008, Advances in Applied Probability.

[63]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[64]  Olivier Faugeras,et al.  The spikes trains probability distributions: A stochastic calculus approach , 2007, Journal of Physiology-Paris.