Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying

Abstract FeSiAl/Al 2 O 3 ceramics with flaky metallic FeSiAl were fabricated by low power plasma spraying. High complex permittivity of the flaky FeSiAl/Al 2 O 3 ceramics can be obtained in the X-band due to the larger internal boundary layer capacitance and conductive network. The reflection loss (RL) values less than −7 dB (larger than 80% absorption) can be obtained in the whole X-band for the FeSiAl/Al 2 O 3 ceramics with 20 wt% FeSiAl and a thickness of 1.18 mm. The total electromagnetic interference (EMI) shielding effectiveness is over 36 dB in the whole X-band for the FeSiAl/Al 2 O 3 ceramics with 40 wt% FeSiAl and a thickness of 2 mm. These results indicated that such ceramics with conductive networks and high complex permittivity can be used to produce effective shielding materials for EM application.

[1]  I. Kim,et al.  Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization , 2012 .

[2]  Freddy Jiménez,et al.  Correlations Between Microstructure and Mechanical Properties of Air Plasma‐Sprayed Thermal Barrier Coatings Exposed to a High Temperature , 2013 .

[3]  C. Ma,et al.  Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites , 2008 .

[4]  M. F. Ain,et al.  Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics , 2012 .

[5]  Y. Wan,et al.  Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials , 2012 .

[6]  Z. Dang,et al.  Tailored Dielectric Properties based on Microstructure Change in BaTiO3-Carbon Nanotube/Polyvinylidene Fluoride Three-Phase Nanocomposites , 2010 .

[7]  C. Y. Lee,et al.  Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag , 2001 .

[8]  Mool C. Gupta,et al.  A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. , 2005, Journal of nanoscience and nanotechnology.

[9]  S. Gyergyek,et al.  Characterisation of plasma-sprayed SrFe12O19 coatings for electromagnetic wave absorption , 2011 .

[10]  L. Deng,et al.  Effect of attrition time on the microwave permeability of magnetic Fe-Si-Al flakes , 2012 .

[11]  Hui-Ming Cheng,et al.  Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding , 2013, Advanced materials.

[12]  Yubai Pan,et al.  Ordered Mesoporous Carbon/Fused Silica Composites , 2008 .

[13]  Yutaka Shimada,et al.  Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy flakes–polymer composite , 1999 .

[14]  Xing-Wei Sun,et al.  Microwave attenuation of multiwalled carbon nanotube-fused silica composites , 2005 .

[15]  Zhenxing Yue,et al.  Preparation and electromagnetic properties of low-temperature sintered ferroelectric–ferrite composite ceramics , 2004 .

[16]  Jing-kun Guo,et al.  Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites , 2007 .

[17]  K. Fukamichi,et al.  Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging , 2003 .

[18]  Uttandaraman Sundararaj,et al.  Electromagnetic interference shielding mechanisms of CNT/polymer composites , 2009 .

[19]  C. Berndt,et al.  Effects of Pores on Mechanical Properties of Plasma‐Sprayed Ceramic Coatings , 2004 .

[20]  Govind,et al.  Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties , 2013 .

[21]  Sung Soo Kim,et al.  Microwave Absorbing Properties of Flaky Fe-Si-Al Alloy Powder-Rubber Composites , 2007 .

[22]  J. Zha,et al.  Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films with High Dielectric Permittivity , 2009 .

[23]  Z. Dang,et al.  Stretch-Modulated Carbon Nanotube Alignment in Ferroelectric Polymer Composites: Characterization of the Orientation State and Its Influence on the Dielectric Properties , 2011 .

[24]  M. Yan,et al.  The evolution of microstructure and magnetic properties of Fe–Si–Al powders prepared through melt-spinning , 2008 .

[25]  Huy-Zu Cheng,et al.  The electromagnetic shielding effectiveness of carbon nanotubes polymer composites , 2007 .

[26]  P. Ctibor,et al.  Structure and mechanical properties of plasma sprayed coatings of titania and alumina , 2006 .

[27]  Avanish Pratap Singh,et al.  Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution , 2013 .

[28]  Mohammed H Al-Saleh,et al.  X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites , 2013 .

[29]  Lai-fei Cheng,et al.  Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites , 2012 .

[30]  F. Luo,et al.  Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings , 2010 .

[31]  F. Luo,et al.  Effect of MoSi2 content on dielectric and mechanical properties of MoSi2/Al2O3 composite coatings , 2012 .