Theory of relativistic gyro‐traveling wave devices

Using a Hamiltonian formalism, nonlinear, fully relativistic, multimode, multifrequency equations are derived which describe gyro‐traveling wave devices. Nonuniform waveguides and nonlinearly tapered magnetic fields are incorporated into the analysis. The formalism is used to analyze the effect of velocity spread on Doppler upshifted operation. It is shown that with present technology, gyro‐traveling wave devices cannot operate far from cutoff if high efficiency is desired. As an example, the analysis is applied to a 10 GHz, 430 kV, 240 A gyrotwistron operating at the fundamental cyclotron harmonic with a tapered wall radius and magnetic field. A realistic design that achieves over 30% efficiency is produced. The issue of stability of this device with respect to competition from parasitic modes is taken up in a companion paper [Phys. Plasmas 2, 3511 (1995)].

[1]  A. G. Litvak,et al.  STRONG MICROWAVES IN PLASMAS , 1994 .

[2]  Irwin,et al.  High power operation of an X-band gyrotwistron. , 1994, Physical Review Letters.

[3]  R. Temkin,et al.  A long-pulse, CARM oscillator experiment , 1992 .

[4]  V. L. Bratman,et al.  Cyclotron autoresonance masers: Recent experiments and projects , 1992, 1992 9th International Conference on High-Power Particle Beams.

[5]  M. Reiser,et al.  High power operation of first and second harmonic gyrotwystrons , 1995 .

[6]  Victor L. Granatstein,et al.  High-power microwave sources , 1987 .

[7]  J. Schneider,et al.  Stimulated Emission of Radiation by Relativistic Electrons in a Magnetic Field , 1959 .

[8]  Nonlinear dynamics of the gyrotron traveling wave amplifier , 1991 .

[9]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[10]  W. Lawson,et al.  High-power operation of a K-band second-harmonic gyroklystron. , 1993 .

[11]  V. K. Yulpatov Nonlinear theory of the interaction between a periodic electron beam and an electromagnetic wave , 1967 .

[12]  Gregory S. Nusinovich,et al.  Efficiency of frequency up-shifted gyrodevices: cyclotron harmonics versus CARM's , 1994 .

[13]  Richard J. Temkin,et al.  Experimental study of a high‐frequency megawatt gyrotron oscillator , 1990 .

[14]  E. Courant,et al.  Theory of the Alternating-Gradient Synchrotron , 1958 .

[15]  W. K. Lau,et al.  A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment , 1990 .

[16]  Barnett,et al.  Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube. , 1989, Physical review letters.

[17]  Hogan,et al.  Efficient operation of a high-power X-band gyroklystron. , 1991, Physical review letters.

[18]  John R. Pierce,et al.  Traveling-Wave Tubes , 1947, Proceedings of the IRE.

[19]  A. T. Lin,et al.  Gain and bandwidth of the gyro-TWT and CARM amplifiers , 1988 .

[20]  W. Lawson,et al.  Performance characteristics of a high-power X-band two-cavity gyroklystron , 1992 .

[21]  H. Huey,et al.  Gyrotrons for ECH applications , 1990 .

[22]  Gregory S. Nusinovich,et al.  Relativistic gyrotrons and cyclotron autoresonance masers , 1981 .

[23]  Parker,et al.  Improved oscillator phase locking by use of a modulated electron beam in a gyrotron. , 1986, Physical review letters.

[24]  B. Levush,et al.  The interaction of high- and low-frequency waves in a free electron laser , 1990 .

[25]  Victor L. Granatstein,et al.  Experimental study of a Ka-band gyrotron backward-wave oscillator , 1990 .

[26]  B. Levush,et al.  Theory of phase-locked gyrotrons operating at cyclotron harmonics , 1994 .

[27]  Miller,et al.  Use of Lie transforms to generalize Madey's theorem for computing the gain in microwave devices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  G. Nusinovich,et al.  Stability analysis of relativistic gyro‐traveling wave devices , 1995 .

[29]  Anthony T. Lin,et al.  A study of the saturated output of a TE01 gyrotron using an electromagnetic finite size particle code , 1982 .