Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains

The nosocomial pathogen Acinetobacter baumannii acquired clinical significance due to the rapid development of its multi-drug resistant (MDR) phenotype. A. baumannii strains have the ability to colonize several ecological niches including soil, water, and animals, including humans. They also survive under extremely harsh environmental conditions thriving on rare and recalcitrant carbon compounds. However, the molecular basis behind such extreme adaptability of A. baumannii is unknown. We have therefore determined the complete genome sequence of A. baumannii DS002, which was isolated from agricultural soils, and compared it with 78 complete genome sequences of A. baumannii strains having complete information on the source of their isolation. Interestingly, the genome of A. baumannii DS002 showed high similarity to the genome of A. baumannii SDF isolated from the body louse. The environmental and clinical strains, which do not share a monophyletic origin, showed the existence of a strain-specific unique gene pool that supports niche-specific survival. The strains isolated from infected samples contained a genetic repertoire with a unique gene pool coding for iron acquisition machinery, particularly those required for the biosynthesis of acinetobactin. Interestingly, these strains also contained genes required for biofilm formation. However, such gene sets were either partially or completely missing in the environmental isolates, which instead harbored genes required for alternate carbon catabolism and a TonB-dependent transport system involved in the acquisition of iron via siderophores or xenosiderophores.

[1]  The Indian Journal of Medical Research , 1913, The Indian medical gazette.

[2]  H. Neujahr,et al.  Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. , 1973, European journal of biochemistry.

[3]  H. Neujahr,et al.  Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. , 1973, European journal of biochemistry.

[4]  J. G. Kuenen,et al.  Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi) , 1985, Journal of bacteriology.

[5]  S. Levay Chapter 14: The patchy intrinsic projections of visual cortex , 1988 .

[6]  R. H. Olsen,et al.  Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c , 1990, Journal of bacteriology.

[7]  P. Rather,et al.  Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes , 1993 .

[8]  P. Oriel,et al.  Characterization of the Bacillus stearothermophilus BR219 phenol hydroxylase gene , 1995, Applied and environmental microbiology.

[9]  D. Mack,et al.  The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.

[10]  A. Leong,et al.  Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. , 1998, Journal of clinical pathology.

[11]  G. Gilardi,et al.  Phenol hydroxylase from Acinetobacter radioresistens is a multicomponent enzyme. Purification and characterization of the reductase moiety. , 1999, European journal of biochemistry.

[12]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. , 1999, Molecular biology and evolution.

[13]  K. Poole,et al.  The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525. , 1999, FEMS microbiology letters.

[14]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Mitchell L. Cohen Changing patterns of infectious disease , 2000, Nature.

[16]  Evolutionary History of hrgA, Which Replaces the Restriction Gene hpyIIIR in the hpyIII Locus of Helicobacter pylori , 2003 .

[17]  L. Actis,et al.  Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. , 2003, Microbiology.

[18]  S. Nagata,et al.  Characterization of short-chain dehydrogenase/reductase homologues of Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C). , 2003, Biochimica et biophysica acta.

[19]  G. Gilardi,et al.  The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13. , 2003, European journal of biochemistry.

[20]  Wei Zhang,et al.  Genetic Organization of Genes Encoding Phenol Hydroxylase, Benzoate 1,2-Dioxygenase Alpha Subunit and Its Regulatory Proteins in Acinetobacter calcoaceticus PHEA-2 , 2003, Current Microbiology.

[21]  T. Traut,et al.  Physiological concentrations of purines and pyrimidines , 1994, Molecular and Cellular Biochemistry.

[22]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[23]  J. Powlowski,et al.  Genetics and biochemistry of phenol degradation byPseudomonas sp. CF600 , 1994, Biodegradation.

[24]  J. G. Kuenen,et al.  Role of quinoprotein glucose-dehydrogenase in gluconic acid production by Acinetobacter calcoaceticus , 2004, Antonie van Leeuwenhoek.

[25]  P. Postma,et al.  The functional significance of glucose dehydrogenase in Klebsiella aerogenes , 1985, Archives of Microbiology.

[26]  J. Swings,et al.  Sequence-Based Typing of adeB as a Potential Tool To Identify Intraspecific Groups among Clinical Strains of Multidrug-Resistant Acinetobacter baumannii , 2005, Journal of Clinical Microbiology.

[27]  J. Claverie,et al.  Characterization of the Naturally Occurring Oxacillinase of Acinetobacter baumannii , 2005, Antimicrobial Agents and Chemotherapy.

[28]  Christopher M Thomas,et al.  Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria , 2005, Nature Reviews Microbiology.

[29]  W. Inwood,et al.  A previously undescribed pathway for pyrimidine catabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Weissenbach,et al.  Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii , 2006, PLoS genetics.

[31]  M. Kaufmann,et al.  The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. , 2006, FEMS microbiology letters.

[32]  K. Matsushita,et al.  Membrane-Bound, 2-Keto-d-Gluconate-Yielding d-Gluconate Dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: Molecular Properties and Gene Disruption , 2007, Applied and Environmental Microbiology.

[33]  J. Swings,et al.  Biodiversity of chloramphenicol-resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. , 2007, Research in microbiology.

[34]  Michele Iacono,et al.  Whole-Genome Pyrosequencing of an Epidemic Multidrug-Resistant Acinetobacter baumannii Strain Belonging to the European Clone II Group , 2008, Antimicrobial Agents and Chemotherapy.

[35]  P. Wieczorek,et al.  Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. , 2008, Folia histochemica et cytobiologica.

[36]  L. Rice Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. , 2008, The Journal of infectious diseases.

[37]  M. Adams,et al.  Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii , 2008, Journal of bacteriology.

[38]  Chul Hee Choi,et al.  Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells , 2008, BMC Microbiology.

[39]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[40]  J. Poulain,et al.  Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles , 2008, PloS one.

[41]  J. Gaddy,et al.  Regulation of Acinetobacter baumannii biofilm formation. , 2009, Future microbiology.

[42]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[43]  P. Nordmann,et al.  OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii , 2009, Antimicrobial Agents and Chemotherapy.

[44]  G. Pier,et al.  The pgaABCD Locus of Acinetobacter baumannii Encodes the Production of Poly-β-1-6-N-Acetylglucosamine, Which Is Critical for Biofilm Formation , 2009, Journal of bacteriology.

[45]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[46]  Michael Klompas,et al.  Acinetobacter baumannii: An Emerging and Important Pathogen. , 2010, Journal of clinical outcomes management : JCOM.

[47]  P. Courvalin,et al.  Efflux-Mediated Antibiotic Resistance in Acinetobacter spp , 2010, Antimicrobial Agents and Chemotherapy.

[48]  P. Nordmann,et al.  Worldwide Dissemination of the blaOXA-23 Carbapenemase Gene of Acinetobacter baumannii1 , 2010, Emerging infectious diseases.

[49]  J. Oakeshott,et al.  Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation , 2010, Microbiology and Molecular Biology Reviews.

[50]  J. Gaddy,et al.  The Opportunistic Human Pathogen Acinetobacter baumannii Senses and Responds to Light , 2010, Journal of bacteriology.

[51]  M. Falagas,et al.  Treatment of Acinetobacter infections , 2010, Expert opinion on pharmacotherapy.

[52]  D. Wemmer,et al.  The Rut Pathway for Pyrimidine Degradation: Novel Chemistry and Toxicity Problems , 2010, Journal of bacteriology.

[53]  Emerging carbapenem resistance in the context of a new metallo-beta-lactamase (NDM-1). , 2010, The National medical journal of India.

[54]  D. Raghunath New metallo β-lactamase NDM-1 , 2010, The Indian journal of medical research.

[55]  S. Kuo,et al.  Emergence and Distribution of Plasmids Bearing the blaOXA-51-Like Gene with an Upstream ISAba1 in Carbapenem-Resistant Acinetobacter baumannii Isolates in Taiwan , 2010, Antimicrobial Agents and Chemotherapy.

[56]  J. Ingraham,et al.  The Surprising Rut Pathway: an Unexpected Way To Derive Nitrogen from Pyrimidines , 2010, Journal of bacteriology.

[57]  Kerri A. Thom,et al.  Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity , 2011, BMC Genomics.

[58]  J. Turton,et al.  Use of the Accessory Genome for Characterization and Typing of Acinetobacter baumannii , 2011, Journal of Clinical Microbiology.

[59]  Karl A. Hassan,et al.  Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions , 2011, BMC Genomics.

[60]  Jungmin Kim,et al.  Complete Genome Sequence of Multidrug-Resistant Acinetobacter baumannii Strain 1656-2, Which Forms Sturdy Biofilm , 2011, Journal of bacteriology.

[61]  D. Siddavattam,et al.  Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. DS002 and Cloning, Sequencing of Partial catA Gene , 2011, Indian Journal of Microbiology.

[62]  P. Visca,et al.  Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. , 2011, Research in microbiology.

[63]  Y. Gan,et al.  Genome Sequence of Acinetobacter baumannii MDR-TJ , 2011, Journal of bacteriology.

[64]  A. Campagnari,et al.  The Acinetobacter baumannii Biofilm-Associated Protein Plays a Role in Adherence to Human Epithelial Cells , 2011, Infection and Immunity.

[65]  N. Soares,et al.  Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii , 2011, Antimicrobial Agents and Chemotherapy.

[66]  Eric P. Skaar,et al.  Host–microbe interactions that shape the pathogenesis of Acinetobacter baumannii infection , 2012, Cellular microbiology.

[67]  P. Higgins,et al.  OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii , 2013, Antimicrobial Agents and Chemotherapy.

[68]  F. Löhr,et al.  Structure and Biosynthesis of Fimsbactins A–F, Siderophores from Acinetobacter baumannii and Acinetobacter baylyi , 2013, Chembiochem : a European journal of chemical biology.

[69]  Brendan F Gilmore,et al.  Clinical relevance of the ESKAPE pathogens , 2013, Expert review of anti-infective therapy.

[70]  Mayumi Yoshida,et al.  Successful treatment of skin and soft tissue infection due to carbapenem-resistant Acinetobacter baumannii by ampicillin-sulbactam and meropenem combination therapy. , 2013, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[71]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[72]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[73]  P. Loewen,et al.  Genome Sequence of a Tigecycline-Resistant Clinical Isolate of Acinetobacter baumannii Strain AB031 Obtained from a Bloodstream Infection , 2014, Genome Announcements.

[74]  G. Donelli,et al.  Biofilm formation in Acinetobacter baumannii. , 2014, The new microbiologica.

[75]  Yongfei Hu,et al.  Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants , 2014, BMC Genomics.

[76]  J. Gregory Caporaso,et al.  The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes , 2014, PeerJ.

[77]  Paolo Visca,et al.  Acinetobacter baumannii: evolution of a global pathogen. , 2014, Pathogens and disease.

[78]  S. Amyes,et al.  OXA β-Lactamases , 2014, Clinical Microbiology Reviews.

[79]  K. Nielsen,et al.  Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation , 2014, Applied and Environmental Microbiology.

[80]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[81]  S. Domingues,et al.  Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii , 2016, Microorganisms.

[82]  Chitra Dutta,et al.  BPGA- an ultra-fast pan-genome analysis pipeline , 2016, Scientific Reports.

[83]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[84]  K. Thong,et al.  Comparative Genomics of Two ST 195 Carbapenem-Resistant Acinetobacter baumannii with Different Susceptibility to Polymyxin Revealed Underlying Resistance Mechanism , 2016, Front. Microbiol..

[85]  Priyanka Singh,et al.  Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study , 2016, Journal of pathogens.

[86]  A. Pühler,et al.  Intraspecies Transfer of the Chromosomal Acinetobacter baumannii blaNDM-1 Carbapenemase Gene , 2016, Antimicrobial Agents and Chemotherapy.

[87]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[88]  A. Viale,et al.  The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen , 2017, Genome biology and evolution.

[89]  Lucian Ilie,et al.  HISEA: HIerarchical SEed Aligner for PacBio data , 2017, BMC Bioinformatics.

[90]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[91]  Xihui Shen,et al.  Siderophore-Mediated Iron Acquisition Enhances Resistance to Oxidative and Aromatic Compound Stress in Cupriavidus necator JMP134 , 2018, Applied and Environmental Microbiology.

[92]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2017, Nature Communications.

[93]  R. Bonomo,et al.  Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain. , 2019, International Journal of Antimicrobial Agents.