Responsive Polymer Networks and Brushes for Active Plasmonics

[1]  Alberto Moreno-Cencerrado,et al.  Optical Waveguide‐Enhanced Diffraction for Observation of Responsive Hydrogel Nanostructures , 2017 .

[2]  J. Dostálek,et al.  Reversibly tunable plasmonic bandgap by responsive hydrogel grating. , 2016, Optics express.

[3]  E. Lacaze,et al.  Tunable Electromagnetic Coupling in Plasmonic Nanostructures Mediated by Thermoresponsive Polymer Brushes. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[4]  A. Hohenau,et al.  Nanoplasmonic heating and sensing to reveal the dynamics of thermoresponsive polymer brushes , 2015 .

[5]  Wei-Chuan Shih,et al.  Label‐free, zeptomole cancer biomarker detection by surface‐enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles , 2015, Journal of biophotonics.

[6]  E. Lacaze,et al.  Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonics Applications , 2015 .

[7]  T. Nagao,et al.  Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions , 2015 .

[8]  Jin Huang,et al.  Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. , 2015, Analytica chimica acta.

[9]  Xiaodong Chen,et al.  Towards active plasmonic response devices , 2015, Nano Research.

[10]  Jianfang Wang,et al.  (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths , 2014, Advanced materials.

[11]  Yasuhiro Shiraishi,et al.  Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. , 2014, ACS applied materials & interfaces.

[12]  R. Sardar,et al.  Novel pH-responsive nanoplasmonic sensor: controlling polymer structural change to modulate localized surface plasmon resonance response , 2014 .

[13]  Liangfang Zhang,et al.  Hydrogel Containing Nanoparticle-Stabilized Liposomes for Topical Antimicrobial Delivery , 2014, ACS nano.

[14]  R. Sardar,et al.  Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas. , 2014, Nano letters.

[15]  Jakub Dostalek,et al.  Plasmon-Enhanced Fluorescence Biosensors: a Review , 2013, Plasmonics.

[16]  Jakub Dostalek,et al.  Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[17]  S. Minko,et al.  Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers , 2012 .

[18]  S. Singamaneni,et al.  Reversible tuning of plasmon coupling in gold nanoparticle chains using ultrathin responsive polymer film. , 2011, ACS applied materials & interfaces.

[19]  A. Hohenau,et al.  Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering. , 2010, ACS nano.

[20]  J. Ghilane,et al.  Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. , 2010, Journal of the American Chemical Society.

[21]  N. Zheludev,et al.  Active plasmonics: Current status , 2009, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[22]  G. Sotzing,et al.  Gold nanoparticles with externally controlled, reversible shifts of local surface plasmon resonance bands. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[23]  W. Knoll,et al.  Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films. , 2009, Macromolecular rapid communications.

[24]  V. Tsukruk,et al.  Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials , 2008 .

[25]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[26]  Martin Moskovits,et al.  Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS , 2007 .

[27]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[28]  W. Knoll,et al.  Electrochemical surface plasmon spectroscopy - Recent developments and applications , 2007 .

[29]  Wolfgang Knoll,et al.  Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[30]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[31]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[32]  A. Hohenau,et al.  Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. , 2005, Journal of the American Chemical Society.

[33]  M. Sastry,et al.  Gold nanoparticle networks with photoresponsive interparticle spacings. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[34]  Sergiy Minko,et al.  Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. , 2004, Journal of the American Chemical Society.

[35]  W. Knoll,et al.  Surface plasmon enhanced diffraction for label-free biosensing. , 2004, Analytical chemistry.

[36]  Wolfgang Knoll,et al.  Immunosensor with self-referencing based on surface plasmon diffraction. , 2004, Analytical chemistry.

[37]  W. Knoll,et al.  A surface plasmon resonance study of volume phase transitions in N-isopropylacrylamide gel films , 2002 .

[38]  Wolfgang Knoll,et al.  Total internal diffraction of plasmon surface polaritons , 1987 .

[39]  Wolfgang Knoll,et al.  Plasmon surface polariton fields versus TIR evanescent waves for scattering experiments at surfaces , 1987 .