Trusted Node QKD at an Electrical Utility

Challenges facing the deployment of quantum key distribution (QKD) systems in critical infrastructure protection applications include the optical loss-key rate tradeoff, addition of network clients, and interoperability of vendor-specific QKD hardware. Here, we address these challenges and present results from a recent field demonstration of three QKD systems on a real-world electric utility optical fiber network.

[1]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[2]  Shanlin Yang,et al.  Big data driven smart energy management: From big data to big insights , 2016 .

[3]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[4]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[5]  Anjan Bose,et al.  Bandwidth and Latency Requirements for Smart Transmission Grid Applications , 2012, IEEE Transactions on Smart Grid.

[6]  Christian Kurtsiefer,et al.  Daylight operation of a free space, entanglement-based quantum key distribution system , 2008, 0812.1880.

[7]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[8]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[9]  Christian Kurtsiefer,et al.  Free-space quantum key distribution with entangled photons , 2006 .

[10]  Thomas Brochmann Pedersen,et al.  High performance information reconciliation for QKD with CASCADE , 2013, Quantum Inf. Comput..

[11]  Yi Xu,et al.  A survey on the communication architectures in smart grid , 2011, Comput. Networks.

[12]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[13]  Qiang Zhang,et al.  Integrating quantum key distribution with classical communications in backbone fiber network. , 2017, Optics express.

[14]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[15]  Bing Qi,et al.  Quantum secret sharing using weak coherent states , 2019, Physical Review A.

[16]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[17]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[18]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[19]  H. Lo,et al.  Quantum key distribution with entangled photon sources , 2007, quant-ph/0703122.

[20]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[21]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[24]  Nicholas Peters,et al.  Demonstration of a Quantum Key Distribution Trusted Node on an Electric Utility Fiber Network , 2019, 2019 IEEE Photonics Conference (IPC).

[25]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[26]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[27]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[28]  R Laflamme,et al.  Entangled quantum key distribution over two free-space optical links. , 2008, Optics express.

[29]  Randy L. Ekl,et al.  Security Technology for Smart Grid Networks , 2010, IEEE Transactions on Smart Grid.

[30]  University of Cambridge,et al.  Quantum key distribution using a triggered quantum dot source emitting near 1.3μm , 2007, 0710.0565.

[31]  Wei Chen,et al.  Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. , 2019, Optics letters.

[32]  Peterson,et al.  Daylight quantum key distribution over 1.6 km , 2000, Physical review letters.

[33]  Kenneth C. Budka,et al.  Communication network architecture and design principles for smart grids , 2010, Bell Labs Technical Journal.

[34]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[35]  Xiongfeng Ma,et al.  Secure quantum key distribution with realistic devices , 2020 .

[36]  Hsiao-Hwa Chen,et al.  Smart Grid Communication: Its Challenges and Opportunities , 2013, IEEE Transactions on Smart Grid.

[37]  Taskin Koçak,et al.  A Survey on Smart Grid Potential Applications and Communication Requirements , 2013, IEEE Transactions on Industrial Informatics.

[38]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[39]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[40]  Stefano Pirandola,et al.  Continuous-Variable Quantum Key Distribution using Thermal States , 2011, 1110.4617.

[41]  Nicolas Cerf,et al.  From quantum cloning to quantum key distribution with continuous variables: a review (Invited) , 2007 .

[42]  J. F. Dynes,et al.  Cambridge quantum network , 2019, npj Quantum Information.

[43]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[44]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[45]  Jane E. Nordholt,et al.  Network-Centric Quantum Communications with Application to Critical Infrastructure Protection , 2013, ArXiv.

[46]  Jeffrey H. Shapiro,et al.  Entanglement-based quantum communication secured by nonlocal dispersion cancellation , 2014, Physical Review A.

[47]  B Qi,et al.  Two-party secret key distribution via a modified quantum secret sharing protocol. , 2015, Optics express.

[48]  Vadim Makarov,et al.  Implementation vulnerabilities in general quantum cryptography , 2018, New Journal of Physics.

[49]  P. Grangier,et al.  Experimental open-air quantum key distribution with a single-photon source , 2004, quant-ph/0402110.

[50]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[51]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[52]  Hua-Lei Yin,et al.  Practical quantum digital signature , 2015, 1507.03333.

[53]  C. Elliott Building the quantum network* , 2002 .