Durabilité des matériaux de puits pétroliers dans le cadre d'une séquestration géologique de dioxyde de carbone et d'hydrogène sulfuré

La sequestration geologique du dioxyde de carbone (CO2) et du sulfure d'hydrogene (H2S) est une solution envisagee par l'industrie petroliere pour stocker durablement ces gaz indesirables. Elle consiste a les injecter via des puits dans des reservoirs geologiques profonds. Les puits, constitues par des tubes d'acier entoures d'une gaine de ciment, peuvent etre degrades et ainsi constituer un chemin de fuite des gaz vers la surface qui auraient des consequences humaines et environnementales serieuses. Diverses experimentations en laboratoire ont simule le vieillissement de ces deux materiaux dans des conditions de sequestration geologique. Pour ce faire, un protocole experimental et analytique specifique a ete mis en place. La simulation numerique du vieillissement du ciment a egalement ete abordee. Le ciment et l'acier ont ete alteres au contact de diverses phases fluides a 500 bar-120°C et 500 bar-200°C : une saumure, une saumure chargee en H2S-CO2, un melange saumure+phase supercritique a H2S-CO2 et une phase supercritique a H2S-CO2 en l'absence d'eau liquide. Dans tous ces cas, on observe deux reactions decouplees : la carbonatation du ciment par le CO2 et la sulfuration de l'acier par le H2S. Il apparait que la carbonatation est maximale et que la sulfuration est au contraire minimale au sein de la phase supercritique en l'absence d'eau liquide. Les proprietes texturales et de porosite du ciment sont peu ou pas affectees par tous les traitements a 120°C. La porosite est meme reduite en presence de H2S-CO2. Par contre, a 200°C, ces proprietes sont affectees par le fait de la presence d'eau liquide dans le milieu. A cette temperature, seul le vieillissement du ciment au sein de la phase supercritique sans eau liquide ameliore ses proprietes. Dans toutes les conditions testees, l'acier est toujours corrode, il est donc le materiau le plus vulnerable des puits.

[1]  R. A. Bruckdorfer,et al.  Carbon Dioxide Corrosion in Oilwell Cements , 1986 .

[2]  Wieslawa NocuO-Wczelik,et al.  Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates , 1999 .

[3]  G. Domizzi,et al.  Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels , 2001 .

[4]  John J. Carroll,et al.  DESIGN CONSIDERATIONS FOR ACID GAS INJECTION , 1999 .

[5]  Morihiro Mihara,et al.  Modelling the interaction of bentonite with hyperalkaline fluids , 2002 .

[6]  J. Dubessy,et al.  Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions , 1989 .

[7]  E. Reardon,et al.  Vacuum method for carbonation of cementitious wasteforms. , 2001, Environmental science & technology.

[8]  N. R. Short,et al.  Preliminary investigations into the supercritical carbonation of cement pastes , 2001 .

[9]  J. Pironon,et al.  Synthetic fluid inclusions as recorders of microfracture healing and overgrowth formation rates , 2004 .

[10]  R. Shiraki,et al.  Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA , 2000 .

[11]  C. L. Page,et al.  Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis , 2001 .

[12]  Zhenhao Duan,et al.  An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar , 2003 .

[13]  V. Matte,et al.  Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes , 1999 .

[14]  PUTTING CARBON BACK INTO THE GROUND , 2002 .

[15]  Complementary analyses of a tricalcium silicate sample hydrated at high pressure and temperature , 2002 .

[16]  Patrick Goblet,et al.  Module-oriented modeling of reactive transport with HYTEC , 2003 .

[17]  R. Šiaučiūnas,et al.  Influence of tobermorite texture and specific surface area on CO2 chemisorption , 2004 .

[18]  H. Kus,et al.  Microstructural investigations of naturally and artificially weathered autoclaved aerated concrete , 2003 .

[19]  Laurent Frouin,et al.  Microstructural analysis of RPC (Reactive Powder Concrete) , 1995 .

[20]  T. Okabe,et al.  Synthetic fluid inclusion logging to measure temperatures and sample fluids in the Kakkonda geothermal field, Japan , 1997 .

[21]  Catherine A Peters,et al.  Safe storage of CO2 in deep saline aquifers. , 2002, Environmental science & technology.

[22]  E Wichert,et al.  Acid gas injection eliminates sulfur recovery expense , 1997 .

[23]  D. Janecky,et al.  Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon , 2003 .

[24]  Amit Chakma Acid gas re-injection — A practical way to eliminate CO2 emissions from gas processing plants , 1997 .

[25]  Study of oilwell cements by solid-state NMR , 2004 .

[26]  J. Frantz,et al.  The compositional limits of fluid immiscibility in the system H2ONaClCO2 as determined with the use of synthetic fluid inclusions in conjunction with mass spectrometry , 1992 .

[27]  F. Rull,et al.  Determination of Chlorinity in Aqueous Fluids Using Raman Spectroscopy of the Stretching Band of Water at Room Temperature: Application to Fluid Inclusions , 2002 .

[28]  E. Wichert,et al.  Sulfur Disposal by Acid Gas Injection , 1996 .

[29]  K. Shelton,et al.  Synthetic fluid inclusions in natural quartz , 1979 .

[30]  D. Macphee,et al.  Acid attack on pore-reduced cements , 1997 .

[31]  S. Sterner,et al.  Experimental diffusion of hydrogen into synthetic fluid inclusions in quartz , 1995 .

[32]  H. Taylor,et al.  Synthesis of normal and anomalous tobermorites , 1977 .

[33]  M Celia,et al.  Geological Sequestration of CO2: Is Leakage Unavoidable and Acceptable? , 2003 .

[34]  W. Gunter,et al.  Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling , 1997 .

[35]  S. Teramura,et al.  Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste , 2001 .

[36]  F. Glasser,et al.  Thermal treatment of C–S–H gel at 1 bar H2O pressure up to 200 °C , 2003 .

[37]  J. Pironon,et al.  Oil-cracking processes evidence from synthetic petroleum inclusions , 2003 .

[38]  Veronique Barlet-Gouedard,et al.  Mitigation strategies for the risk of CO2 migration through wellbores , 2006 .

[39]  H. Lopez,et al.  Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel , 1999 .

[40]  Jacques Pironon,et al.  A new experimental procedure for simulation of H2S + CO2 geological storage : Application to well cement aging , 2005 .

[41]  T. Sugama Sodium-silicate-activated slag for acid-resistant geothermal well cements , 2004 .

[42]  Mark Graham,et al.  Hydrocarbon Exploration and Production , 1998 .

[43]  Vello Kuuskraa,et al.  Status of U.S. Geologic Carbon Sequestration Research and Technology , 2001 .

[44]  J. P. Gallus Physical And Chemical Properties Of Cement Exposed To Geothermal Dry Steam , 1979 .

[45]  W. Lamb,et al.  Phase relations in the CH4-H2O-NaCl system at 2 kbar, 300 to 600°C as determined using synthetic fluid inclusions , 2002 .

[46]  R. Bakker,et al.  Experimental post-entrapment water loss from synthetic CO2-H2O inclusions in natural quartz , 1991 .

[47]  C. Fabre,et al.  Palaeofluid chemistry of a single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman Spectroscopy) of an Alpine fluid (Mont-Blanc) , 2002 .

[48]  J. Cieślak,et al.  Investigation of scales resulted from a high-temperature sulphidation of Fe–Cr alloys , 1998 .

[49]  J. Thomassin,et al.  Ancient analogues of cement-based materials: stability of calcium silicate hydrates , 1992 .

[50]  L. Hollister Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation , 1990 .

[51]  C. Fabre,et al.  Determination of ions in individual fluid inclusions by laser ablation optical emission spectroscopy: development and applications to natural fluid inclusions , 1999 .

[52]  Z. Krilov,et al.  Investigation of a Long-Term Cement Deterioration Under a High-Temperature, Sour Gas Downhole Environment , 2000 .

[53]  R. Bodnar,et al.  Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities , 2000 .

[54]  Sam Holloway,et al.  Natural occurrences as analogues for the geological disposal of carbon dioxide , 1996 .

[55]  N. R. Short,et al.  Super-critical carbonation of glass-fibre reinforced cement. Part 2: Microstructural observations , 2003 .

[56]  H. Weyten,et al.  Effect of liquid and supercritical carbon dioxide treatments on the leaching performance of a cement-stabilised waste form , 2004 .

[57]  K. Speakman The Stability of Tobermorite in the System CaO-SiO2-H2O at Elevated Temperatures and Pressures , 1968 .

[58]  Yigang Zhang,et al.  Determination of the homogenization temperatures and densities of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions , 1987 .

[59]  D. Brew,et al.  Solubilities of CaO–SiO2–H2O phases at 25°, 55° and 85°C , 2004 .