Derivatives of a finite class of orthogonal polynomials defined on the positive real line related to F-distribution
暂无分享,去创建一个
[1] W. A. Al-Salam. Characterization Theorems for Orthogonal Polynomials , 1990 .
[2] J. K. Ord,et al. Families of frequency distributions , 1973 .
[3] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[4] Wolfgang Hahn,et al. Über die Jacobischen Polynome und zwei verwandte Polynomklassen , 1935 .
[5] F. Marcellán,et al. Orthogonal polynomials on the unit circle and their derivatives , 1991 .
[6] V. B. Uvarov,et al. Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .
[7] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] W. Gautschi. Orthogonal polynomials-Constructive theory and applications * , 1985 .
[10] M. Masjed‐Jamei. Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation , 2002 .
[11] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[12] Esmail Babolian,et al. On numerical improvement of Gauss-Lobatto quadrature rules , 2005, Appl. Math. Comput..
[13] Mohammad Masjed-Jamei,et al. On numerical improvement of closed Newton-Cotes quadrature rules , 2005, Appl. Math. Comput..
[14] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[15] H. L. Krall,et al. On derivatives of orthogonal polynomials. II , 1936 .
[16] W. Gautschi. Construction of Gauss-Christoffel quadrature formulas , 1968 .
[17] Mohammad Masjed-Jamei,et al. On numerical improvement of Gauss-Radau quadrature rules , 2005, Appl. Math. Comput..