Fredholm Transform and Local Rapid Stabilization for a Kuramoto-Sivashinsky Equation

This paper is devoted to the study of the local rapid exponential stabilization problem for a controlled Kuramoto-Sivashinsky equation on a bounded interval. We build a feedback control law to force the solution of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates, provided that the initial datum is small enough. Our approach uses a method we introduced for the rapid stabilization of a Korteweg-de Vries equation. It relies on the construction of a suitable integral transform and can be applied to many other equations.

[1]  Miroslav Krstic,et al.  Backstepping-Forwarding Control and Observation for Hyperbolic PDEs With Fredholm Integrals , 2015, IEEE Transactions on Automatic Control.

[2]  Roger Temam,et al.  Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attr , 1985 .

[3]  Hiroshi Ito,et al.  Non-linear robust boundary control of the Kuramoto-Sivashinsky equation , 2006, IMA J. Math. Control. Inf..

[4]  Eduardo Cerpa,et al.  Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation☆ , 2011 .

[5]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[6]  Miroslav Krstic,et al.  Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback , 2009, IEEE Transactions on Automatic Control.

[7]  Liang-Heng Chen,et al.  Nonlinear waves on liquid film surfaces—II. Bifurcation analyses of the long-wave equation , 1986 .

[8]  Miroslav Krstic,et al.  Compensating the Distributed Effect of a Wave PDE in the Actuation or Sensing Path of Multi-Input and Multi-Output LTI Systems , 2010 .

[9]  Miroslav Krstic,et al.  Compensating the distributed effect of a wave PDE in the actuation or sensing path of MIMO LTI systems , 2010, Syst. Control. Lett..

[10]  Jean-Michel Coron,et al.  Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right , 2013, 1311.4031.

[11]  P. Christofides,et al.  Feedback control of the Kuramoto-Sivashinsky equation , 2000 .

[12]  Miroslav Krstic,et al.  Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays , 2011, IEEE Trans. Autom. Control..

[13]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[14]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[15]  J. Coron Control and Nonlinearity , 2007 .

[16]  C. Zhou,et al.  Stabilization of a spatially non-causal reaction–diffusion equation by boundary control , 2014 .

[17]  Miroslav Krstic,et al.  Compensating the Distributed Effect of Diffusion and Counter-Convection in Multi-Input and Multi-Output LTI Systems , 2011, IEEE Transactions on Automatic Control.

[18]  Yoshiki Kuramoto,et al.  On the Formation of Dissipative Structures in Reaction-Diffusion Systems Reductive Perturbation Approach , 1975 .

[19]  Roger Temam,et al.  Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension , 1986 .

[20]  Eduardo Cerpa Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation , 2009 .

[21]  M. Krstić,et al.  Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation , 2001 .

[22]  P. Christofides,et al.  Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control , 2000 .

[23]  Lorenzo Giacomelli,et al.  New bounds for the Kuramoto‐Sivashinsky equation , 2005 .

[24]  Jonathan Goodman,et al.  Stability of the kuramoto-sivashinsky and related systems† , 1994 .

[25]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[26]  J. Eckmann,et al.  A global attracting set for the Kuramoto-Sivashinsky equation , 1993 .

[27]  Tom Gambill,et al.  Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation , 2005, math/0508481.

[28]  Toshihiro Kobayashi,et al.  Adaptive stabilization of the Kuramoto-Sivashinsky equation , 2002, Int. J. Syst. Sci..

[29]  G. Sivashinsky On Flame Propagation Under Conditions of Stoichiometry , 1980 .

[30]  Miroslav Krstic,et al.  Backstepping-forwarding control of parabolic PDEs with partially separable kernels , 2014, 53rd IEEE Conference on Decision and Control.

[31]  A. P. Hooper,et al.  Nonlinear instability at the interface between two viscous fluids , 1985 .

[32]  Piotr Zgliczynski,et al.  Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof , 2002, SIAM J. Appl. Dyn. Syst..