Silurian shales of the East European Platform in Poland : some exploration problems

its reasonably well-constrained geological framework, entails a number of contentious issues that need to be resolved before this emerging shale gas play will enter a stage of successful development. The succession is thought to have originated in a Caledonian foredeep encroaching distally onto a pericratonic shelf ramp. However, the geochemical signature of the mudrocks is consistent with a cratonic rather than orogenic sourcing, the proximal part of the foredeep basin-fill is apparently missing, and the shale succession juxtaposes in part across the Teisseyre-Tornquist Zone against suspected terranes with no evidence of Silurian tectonism. Organic-rich Llandovery– Wenlock shales form a NW-SE striking central belt that is increasingly calcareous toward the craton (NE) and more silty toward the inferred orogen (SW), with the TOC content decreasing in both directions perpendicular to the strike. The TOC trend seems consistent with the deep-downlap model of black shale deposition suggested for many Paleozoic foredeep basins, but does not quite agree with the outer neritic to upper bathyal depths assumed for the shale

[1]  R. Dadlez,et al.  Some key problems of the pre-Permian tectonics of Poland , 2013 .

[2]  K. Jaworowski Facies analysis of the Silurian shale-siltstone succession in Pomerania (northern Poland) , 2013 .

[3]  R. Slatt Important geological properties of unconventional resource shales , 2011 .

[4]  Zdzislaw Modliski,et al.  Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region , 2010 .

[5]  Andreas Barth,et al.  Global crustal stress pattern based on the World Stress Map database release 2008 , 2010 .

[6]  P. Poprawa,et al.  Charakterystyka geochronologiczna obszarów źródłowych dla dolnopaleozoicznych utworów z NW kratonu wschodnioeuropejskiego oraz strefy Koszalin-Chojnice; datowania detrytycznych łyszczyków (K/Ar) i cyrkonów (U/Pb SHRIMP) , 2006 .

[7]  M. Grad,et al.  Crustal structure below the Polish Basin: Is it composed of proximal terranes derived from Baltica? , 2005 .

[8]  T. Pharaoh Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review , 1999 .

[9]  S. Šliaupa,et al.  Late Vendian–Early Palæozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis , 1999 .

[10]  A. Berthelsen The Tornquist Zone northwest of the Carpathians: An intraplate pseudosuture , 1998 .

[11]  J. Schieber Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA , 1994 .

[12]  R. Tyson,et al.  Modern and Ancient Continental Shelf Anoxia , 1993 .

[13]  J. Curiale,et al.  Application of organic geochemistry to sequence stratigraphic analysis: Four corners platform area, New Mexico, U.S.A. , 1992 .

[14]  P. Wignall Model for transgressive black shales , 1991 .

[15]  C. A. Ross,et al.  Sea-level changes: An integrated approach , 1986 .

[16]  G. Demaison,et al.  Anoxic Environments and Oil Source Bed Genesis , 1980 .

[17]  Jennifer D. Eoff Global prediction of continuous hydrocarbon accumulations in self-sourced reservoirs , 2012 .

[18]  T. Engelder,et al.  Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland basin evolution , 2011 .

[19]  P. Poprawa Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim , 2010 .

[20]  D. Spain,et al.  Controls on Reservoir Quality and Productivity in the Haynesville Shale, Northwestern Gulf of Mexico Basin , 2010 .

[21]  S. Boggs Petrology of Sedimentary Rocks: Mudstones and shales , 2009 .

[22]  Z. Modliński,et al.  Litostratygrafia syluru polskiej części obniżenia perybałtyckiego - część lądowa i morska (N Polska) , 2006 .

[23]  J. Nawrocki,et al.  Development of Trans-European Suture Zone in Poland: from Ediacaran rifting to Early Palaeozoic accretion , 2006 .

[24]  S. Šliaupa,et al.  Sequence stratigraphy of the Baltic Silurian succession: tectonic control on the foreland infill , 2003, Geological Society, London, Special Publications.

[25]  P. Poprawa,et al.  Rozwój ryftu w późnym neoproterozoiku-wczesnym paleozoiku na lubelsko-podlaskim skłonie kratonu wschodnioeuropejskiego - analiza subsydencji i zapisu facjalnego , 2002 .

[26]  E. Klimuszko Utwory syluru południowo-wschodniej Polski jako skały potencjalnie macierzyste dla dewońskich rop naftowych , 2002 .

[27]  K. Bohacs Contrasting expressions of depositional sequences in mudrocks from marine to non marine environs , 1998 .

[28]  F. Ettensohn TECTONIC CONTROL ON FORMATION AND CYCLICITY OF MAJOR APPALACHIAN UNCONFORMITIES AND ASSOCIATED STRATIGRAPHIC SEQUENCES , 1994 .

[29]  J. Farrington,et al.  Organic matter : productivity, accumulation, and preservation in recent and ancient sediments , 1992 .

[30]  R. Tyson,et al.  Modern and ancient continental shelf anoxia: an overview , 1991, Geological Society, London, Special Publications.

[31]  J. Hardenbol,et al.  Condensed Sections: The Key to Age Determination and Correlation of Continental Margin Sequences , 1988 .