Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience

The development of methods for the activity-dependent tagging of neurons enabled a new way to tackle the problem of engram identification at the cellular level, giving rise to groundbreaking findings in the field of memory studies. However, the resolution of activity-dependent tagging remains limited to the whole-cell level. Notably, events taking place at the synapse level play a critical role in the establishment of new memories, and strong experimental evidence shows that learning and synaptic plasticity are tightly linked. Here, we provide a comprehensive review of the currently available techniques that enable to identify and track the neuronal activity with synaptic spatial resolution. We also present recent technologies that allow to selectively interfere with specific subsets of synapses. Lastly, we discuss how these technologies can be applied to the study of learning and memory.

[1]  Tobias Bonhoeffer,et al.  Activity-Dependent Clustering of Functional Synaptic Inputs on Developing Hippocampal Dendrites , 2011, Neuron.

[2]  Is the place cell a “supple” engram? , 2015, Hippocampus.

[3]  David C Rowland,et al.  Generation of a Synthetic Memory Trace , 2012, Science.

[4]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[5]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[6]  Joanna M. Williams,et al.  Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram , 2018, Front. Mol. Neurosci..

[7]  Takashi Kawashima,et al.  Inverse Synaptic Tagging of Inactive Synapses via Dynamic Interaction of Arc/Arg3.1 with CaMKIIβ , 2012, Cell.

[8]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[9]  Tobias Bonhoeffer,et al.  Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex , 2016, eLife.

[10]  T. Bonhoeffer,et al.  Function of dendritic spines on hippocampal inhibitory neurons. , 2014, Cerebral cortex.

[11]  Jihye Seong,et al.  Advanced Fluorescence Protein-Based Synapse-Detectors , 2016, Front. Synaptic Neurosci..

[12]  M. Sur,et al.  Locally coordinated synaptic plasticity of visual cortex neurons in vivo , 2018, Science.

[13]  Michael Z. Lin,et al.  Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy , 2012, Nature Neuroscience.

[14]  M. Kreutz,et al.  Clustered plasticity in Long-Term Potentiation: How strong synapses persist to maintain long-term memory , 2018 .

[15]  Bruno Bontempi,et al.  Selective Erasure of a Fear Memory , 2009, Science.

[16]  Stephen J. Capuzzi,et al.  Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase. , 2017, Cell chemical biology.

[17]  Catching the engram: strategies to examine the memory trace , 2012, Molecular Brain.

[18]  Erin M. Schuman,et al.  Dynamic Visualization of Local Protein Synthesis in Hippocampal Neurons , 2001, Neuron.

[19]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[20]  K. Tye,et al.  A light- and calcium-gated transcription factor for imaging and manipulating activated neurons , 2017, Nature Biotechnology.

[21]  G. Mongillo,et al.  Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory , 2017, Current Opinion in Neurobiology.

[22]  Hollis T. Cline,et al.  Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development , 2016, Neuron.

[23]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[24]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[25]  Tobias Bonhoeffer,et al.  Loss of Sensory Input Causes Rapid Structural Changes of Inhibitory Neurons in Adult Mouse Visual Cortex , 2011, Neuron.

[26]  J. Frey,et al.  The late maintenance of hippocampal LTP: Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications , 2007, Neuropharmacology.

[27]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[28]  G. Turrigiano The dialectic of Hebb and homeostasis , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  J. G. Hanley Actin-dependent mechanisms in AMPA receptor trafficking , 2014, Front. Cell. Neurosci..

[30]  Michael E. Greenberg,et al.  Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior , 2018, Neuron.

[31]  Na Ji Video-rate Volumetric Functional Imaging of the Brain at Synaptic Resolution , 2017 .

[32]  Tomoki Fukai,et al.  Orchestrated ensemble activities constitute a hippocampal memory engram , 2019, Nature Communications.

[33]  Surya Ganguli,et al.  Cortical layer–specific critical dynamics triggering perception , 2019, Science.

[34]  Michael Z. Lin,et al.  Genetically encoded indicators of neuronal activity , 2016, Nature Neuroscience.

[35]  Jeffrey L. Gauthier,et al.  A Dedicated Population for Reward Coding in the Hippocampus , 2018, Neuron.

[36]  Dimitri Kullmann Silent synapse , 2011, Scholarpedia.

[37]  Mark Mayford,et al.  The search for a hippocampal engram , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Takashi Kawashima,et al.  A genetically encoded fluorescent sensor for in vivo imaging of GABA , 2018, bioRxiv.

[39]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[40]  Kaoru Inokuchi,et al.  Behavioral, cellular, and synaptic tagging frameworks , 2018, Neurobiology of Learning and Memory.

[41]  Michael J Higley,et al.  Calcium Signaling in Dendritic Spines , 2022 .

[42]  Stefan Köhler,et al.  Heroes of the Engram , 2017, The Journal of Neuroscience.

[43]  Na Ji,et al.  High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo , 2019, eLife.

[44]  R. Morris,et al.  Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory , 2010, Proceedings of the National Academy of Sciences.

[45]  Christopher A. de Solis,et al.  Is Arc mRNA Unique: A Search for mRNAs That Localize to the Distal Dendrites of Dentate Gyrus Granule Cells Following Neural Activity , 2017, Front. Mol. Neurosci..

[46]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[47]  E. Isacoff,et al.  A family of photoswitchable NMDA receptors , 2016, eLife.

[48]  Takashi Kitamura,et al.  Engrams and circuits crucial for systems consolidation of a memory , 2017, Science.

[49]  S. Josselyn,et al.  Memory recall and modifications by activating neurons with elevated CREB , 2013, Nature Neuroscience.

[50]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[51]  Da-Ting Lin,et al.  Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo , 2015, Nature Neuroscience.

[52]  M. G. Faulkner,et al.  Engram cells retain memory under retrograde amnesia , 2015, Science.

[53]  S. Kuhlman,et al.  Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties. , 2018, Journal of neurophysiology.

[54]  T. Bonhoeffer,et al.  GABAergic synapses are formed without the involvement of dendritic protrusions , 2008, Nature Neuroscience.

[55]  J. Marvin,et al.  Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ , 2019, Nature Communications.

[56]  S. Tonegawa,et al.  Creating a False Memory in the Hippocampus , 2013, Science.

[57]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[58]  Denise Manahan-Vaughan,et al.  Hippocampal long-term depression: master or minion in declarative memory processes? , 2007, Trends in Neurosciences.

[59]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[60]  Benjamien Moeyaert,et al.  Freeze-frame imaging of synaptic activity using SynTagMA , 2019, Nature Communications.

[61]  Susumu Tonegawa,et al.  Memory engrams: Recalling the past and imagining the future , 2020, Science.

[62]  L. Maffei,et al.  Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation , 1994, Vision Research.

[63]  S. Nabavi,et al.  Hebbian plasticity in vivo: relevance and induction , 2017, Current Opinion in Neurobiology.

[64]  G. Nagel,et al.  Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications , 2014, Proceedings of the National Academy of Sciences.

[65]  Eric R Kandel,et al.  Synapses and memory storage. , 2012, Cold Spring Harbor perspectives in biology.

[66]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[67]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Sulzer,et al.  Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum , 2016, Nature Neuroscience.

[69]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[70]  E. Schuman,et al.  Dendrites , 1978, Journal of the Geological Society.

[71]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[72]  J. Simon Wiegert,et al.  Freeze-frame imaging of synaptic activity using SynTagMA , 2019, Nature Communications.

[73]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[74]  Bong-Kiun Kaang,et al.  Interregional synaptic maps among engram cells underlie memory formation , 2018, Science.

[75]  Bruce L. McNaughton,et al.  Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles , 1999, Nature Neuroscience.

[76]  Ali H. Cetin,et al.  Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation , 2019, bioRxiv.

[77]  Christian Lohmann,et al.  Synaptic clustering during development and learning: the why, when, and how , 2012, Front. Mol. Neurosci..

[78]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[79]  Inbar Brosh,et al.  Holographic optogenetic stimulation of patterned neuronal activity for vision restoration , 2013, Nature Communications.

[80]  Yadin Dudai,et al.  Memorable Trends , 2013, Neuron.

[81]  S. Hobson,et al.  Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats , 2016, The Journal of Neuroscience.

[82]  R. Morris,et al.  Silent Learning , 2018, Current Biology.

[83]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[84]  Mark Mayford,et al.  Spine-Type-Specific Recruitment of Newly Synthesized AMPA Receptors with Learning , 2008, Science.

[85]  Heping Cheng,et al.  Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice , 2017, Nature Methods.

[86]  Dejan Zecevic,et al.  Imaging inhibitory synaptic potentials using voltage sensitive dyes. , 2010, Biophysical journal.

[87]  Charles R. Gerfen,et al.  High-performance probes for light and electron microscopy , 2015, Nature Methods.

[88]  K. Deisseroth,et al.  Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics , 2019, Cell.

[89]  Activity-dependent expression of Channelrhodopsin at neuronal synapses , 2017, Nature Communications.

[90]  F. Karube,et al.  The Diversity of Cortical Inhibitory Synapses , 2016, Front. Neural Circuits.

[91]  O. Steward,et al.  Selective Targeting of Newly Synthesized Arc mRNA to Active Synapses Requires NMDA Receptor Activation , 2001, Neuron.

[92]  Dheeraj S. Roy,et al.  Memory engram storage and retrieval , 2015, Current Opinion in Neurobiology.

[93]  H. Hellinga,et al.  Visualization of Synaptic Inhibition with an Optogenetic Sensor Developed by Cell-Free Protein Engineering Automation , 2013, The Journal of Neuroscience.

[94]  Rafael Yuste,et al.  Comparative Evaluation of Genetically Encoded Voltage Indicators , 2019, Cell reports.

[95]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[96]  M. Kiebler,et al.  Meet the players: local translation at the synapse , 2014, Front. Mol. Neurosci..

[97]  H. Okuno,et al.  Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace , 2016, Front. Mol. Neurosci..

[98]  T. Hirano,et al.  Visualization of subunit-specific delivery of glutamate receptors to postsynaptic membrane during hippocampal long-term potentiation. , 2012, Cell reports.

[99]  Ryohei Yasuda,et al.  Kinetics of Endogenous CaMKII Required for Synaptic Plasticity Revealed by Optogenetic Kinase Inhibitor , 2017, Neuron.

[100]  K. Inokuchi,et al.  Synapse-specific representation of the identity of overlapping memory engrams , 2018, Science.

[101]  T. Bliss,et al.  Long-term potentiation in the hippocampus: discovery, mechanisms and function , 2018, Neuroforum.

[102]  J. D. McGaugh,et al.  Inhibition of Activity-Dependent Arc Protein Expression in the Rat Hippocampus Impairs the Maintenance of Long-Term Potentiation and the Consolidation of Long-Term Memory , 2000, The Journal of Neuroscience.

[103]  Hanchuan Peng,et al.  mGRASP enables mapping mammalian synaptic connectivity with light microscopy , 2011, Nature Methods.

[104]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[105]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[106]  H. Korn,et al.  Distribution of glycine receptors at central synapses: an immunoelectron microscopy study , 1985, The Journal of cell biology.

[107]  Takashi Kawashima,et al.  A new era for functional labeling of neurons: activity-dependent promoters have come of age , 2014, Front. Neural Circuits.

[108]  T. Südhof,et al.  Calcium control of neurotransmitter release. , 2012, Cold Spring Harbor perspectives in biology.

[109]  Bart R. H. Geurten,et al.  Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain , 2020, Neuron.

[110]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[111]  K. Svoboda,et al.  Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. , 2000, Learning & memory.

[112]  Susumu Tonegawa,et al.  Translational Regulatory Mechanisms in Persistent Forms of Synaptic Plasticity , 2004, Neuron.

[113]  Mark J. Schnitzer,et al.  Impermanence of dendritic spines in live adult CA1 hippocampus , 2015, Nature.

[114]  M. Kano Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked , 1995, Neuroscience Research.

[115]  P. Osten,et al.  Experience-Induced Arc/Arg3.1 Primes CA1 Pyramidal Neurons for Metabotropic Glutamate Receptor-Dependent Long-Term Synaptic Depression , 2013, Neuron.

[116]  Kaoru Inokuchi,et al.  Artificial association of pre-stored information to generate a qualitatively new memory. , 2015, Cell reports.

[117]  R. Silver,et al.  Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope , 2014, Journal of Neuroscience Methods.

[118]  E. S. Gibson,et al.  Optogenetic Control of Synaptic Composition and Function , 2017, Neuron.

[119]  N. Emptage,et al.  Imaging synaptic plasticity , 2011, Molecular Brain.

[120]  Konstantin G. Chernov,et al.  Optogenetically controlled protein kinases for regulation of cellular signaling. , 2018, Chemical Society reviews.

[121]  P. Mendéz,et al.  Shaping inhibition: activity dependent structural plasticity of GABAergic synapses , 2014, Front. Cell. Neurosci..

[122]  Juan Burrone,et al.  Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons , 2006, Nature Neuroscience.

[123]  R. Morris,et al.  Locus coeruleus and dopaminergic consolidation of everyday memory , 2016, Nature.

[124]  Denise J. Cai,et al.  Synaptic tagging during memory allocation , 2014, Nature Reviews Neuroscience.

[125]  Elly Nedivi,et al.  Clustered Dynamics of Inhibitory Synapses and Dendritic Spines in the Adult Neocortex , 2012, Neuron.

[126]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[127]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[128]  Timothy E. J. Behrens,et al.  Inhibitory engrams in perception and memory , 2017, Proceedings of the National Academy of Sciences.

[129]  Robert E. Campbell,et al.  pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis , 2014, The Journal of cell biology.

[130]  Shamik Dasgupta,et al.  Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. , 2016, Annual review of genetics.

[131]  吉田 仁美,et al.  Strength in Diversity , 2019, Bridging Communities through Socially Engaged Art.

[132]  G. Collingridge,et al.  Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs , 2004, The Journal of Neuroscience.

[133]  Tomonori Takeuchi,et al.  The synaptic plasticity and memory hypothesis: encoding, storage and persistence , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[134]  R. Huganir,et al.  Real-Time Imaging Reveals Properties of Glutamate-Induced Arc/Arg 3.1 Translation in Neuronal Dendrites , 2016, Neuron.

[135]  O. Steward,et al.  Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse‐specific mRNA translation , 2012, The Journal of comparative neurology.

[136]  E. Schuman,et al.  A Requirement for Local Protein Synthesis in Neurotrophin-Induced Hippocampal Synaptic Plasticity , 1996, Science.

[137]  R. Huganir,et al.  The AMPA Receptor Code of Synaptic Plasticity , 2018, Neuron.

[138]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[139]  B. Hars,et al.  In memory of consolidation. , 2006, Learning & memory.

[140]  Daniel Kernell,et al.  Long-term plasticity , 2006 .

[141]  Tobias Bonhoeffer,et al.  Balance and Stability of Synaptic Structures during Synaptic Plasticity , 2014, Neuron.

[142]  G. Collingridge,et al.  Long-term depression in the CNS , 2010, Nature Reviews Neuroscience.

[143]  U Valentin Nägerl,et al.  Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo , 2018, eLife.

[144]  S. J. Martin,et al.  New life in an old idea: The synaptic plasticity and memory hypothesis revisited , 2002, Hippocampus.

[145]  M. Higley,et al.  Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity , 2019, Nature Reviews Neuroscience.

[146]  Kenichi Ohki,et al.  Functional labeling of neurons and their projections using the synthetic activity–dependent promoter E-SARE , 2013, Nature Methods.

[147]  J. Sanes,et al.  Improved tools for the Brainbow toolbox. , 2013, Nature methods.

[148]  B. Kuhlman,et al.  A genetically-encoded photoactivatable Rac controls the motility of living cells , 2009, Nature.

[149]  E. Schuman,et al.  Dendritic Protein Synthesis, Synaptic Plasticity, and Memory , 2006, Cell.

[150]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[151]  T. Bliss,et al.  A role for dendritic protein synthesis in hippocampal late LTP , 2003, The European journal of neuroscience.

[152]  Jeff W. Lichtman,et al.  NEW TOOLS FOR THE BRAINBOW TOOLBOX , 2013, Nature Methods.

[153]  E. Thiels,et al.  LTP‐ and LTD‐inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo , 2011, Hippocampus.

[154]  C. Holt,et al.  Local translation in neurons: visualization and function , 2019, Nature Structural & Molecular Biology.

[155]  Shayan Aliakbari,et al.  Overexpression of protein kinase Mζ in the hippocampus mitigates Alzheimer’s disease-related cognitive deficit in rats , 2020, Brain Research Bulletin.

[156]  P. Frankland,et al.  Finding the engram , 2015, Nature Reviews Neuroscience.

[157]  Alcino J. Silva,et al.  Synaptic clustering within dendrites: An emerging theory of memory formation , 2015, Progress in Neurobiology.

[158]  K. Inokuchi,et al.  Autophagy Enhances Memory Erasure through Synaptic Destabilization , 2017, The Journal of Neuroscience.

[159]  Johannes D. Seelig,et al.  Video-rate volumetric functional imaging of the brain at synaptic resolution , 2016, Nature Neuroscience.

[160]  David Fitzpatrick,et al.  Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR , 2018, Nature Methods.

[161]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[162]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[163]  Roberto Malinow,et al.  Compartmentalized versus Global Synaptic Plasticity on Dendrites Controlled by Experience , 2011, Neuron.

[164]  Roberto Malinow,et al.  SYNPLA, a method to identify synapses displaying plasticity after learning , 2020, Proceedings of the National Academy of Sciences.

[165]  L. Luo,et al.  Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations , 2013, Neuron.

[166]  Alcino J. Silva,et al.  Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory , 2018, Nature Communications.

[167]  J. J. Macklin,et al.  High-performance calcium sensors for imaging activity in neuronal populations and microcompartments , 2019, Nature Methods.

[168]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[169]  V. Verkhusha,et al.  Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications , 2019, Front. Cell. Neurosci..

[170]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[171]  E. Schreiter,et al.  Improved methods for marking active neuron populations , 2018, Nature Communications.

[172]  Arianna Maffei,et al.  The Many Forms and Functions of Long Term Plasticity at GABAergic Synapses , 2011, Neural plasticity.

[173]  Marvin Goodfriend,et al.  Early Development , 1994 .

[174]  Wei-jun Tang,et al.  Silent Synapse Unsilencing in Hippocampal CA1 Neurons for Associative Fear Memory Storage. , 2018, Cerebral cortex.

[175]  J. Vogelstein,et al.  Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors , 2020, bioRxiv.

[176]  Akiyo Takahashi,et al.  Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning , 2018, Neuron.

[177]  C. Bramham,et al.  The Arc of synaptic memory , 2009, Experimental Brain Research.

[178]  A. Fiala,et al.  Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. , 2015, Cell reports.

[179]  S. Tonegawa,et al.  A clustered plasticity model of long-term memory engrams , 2006, Nature Reviews Neuroscience.

[180]  Yadin Dudai,et al.  Overexpression of PKMζ alters morphology and function of dendritic spines in cultured cortical neurons. , 2012, Cerebral cortex.

[181]  Alcino J. Silva,et al.  Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability , 2018, Nature Neuroscience.

[182]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[183]  Athar N. Malik,et al.  Activity-dependent regulation of inhibitory synapse development by Npas4 , 2008, Nature.

[184]  Sadegh Nabavi,et al.  Optogenetic Inhibition of Synaptic Release with Chromophore-Assisted Light Inactivation (CALI) , 2013, Neuron.

[185]  M. Kotlikoff,et al.  Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology , 2007, The Journal of physiology.

[186]  Wayne S. Sossin,et al.  Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal , 2018, Front. Synaptic Neurosci..

[187]  E. Jorgensen,et al.  Visualizing presynaptic function , 2013, Nature Neuroscience.

[188]  R. Morris,et al.  Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas , 2006, The European journal of neuroscience.

[189]  Elke Edelmann,et al.  Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons , 2017, Front. Synaptic Neurosci..

[190]  J. Simon Wiegert,et al.  Silencing Neurons: Tools, Applications, and Experimental Constraints , 2017, Neuron.

[191]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[192]  Chiayu Q. Chiu,et al.  Long-term plasticity at inhibitory synapses , 2011, Current Opinion in Neurobiology.

[193]  K. Kaila,et al.  Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo , 2017, Proceedings of the National Academy of Sciences.

[194]  Fred H. Gage,et al.  What is memory? The present state of the engram , 2016, BMC Biology.

[195]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[196]  E. Schuman,et al.  Local translation in neuronal processes , 2019, Current Opinion in Neurobiology.

[197]  F. Murakami,et al.  Identification of a cis‐acting element required for dendritic targeting of activity‐regulated cytoskeleton‐associated protein mRNA , 2005, The European journal of neuroscience.

[198]  Erin M. Schuman,et al.  The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging , 2012, Neuron.

[199]  Tobias Bonhoeffer,et al.  Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time , 2015, Neuron.

[200]  Y. Goda,et al.  The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity , 2014, Front. Cell. Neurosci..

[201]  R. Nuydens,et al.  Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture , 2018, Front. Neurosci..

[202]  E. Tulving,et al.  Richard Semon's Theory of Memory , 1978 .

[203]  A. Hayashi‐Takagi,et al.  Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning , 2017, Front. Neural Circuits.

[204]  G. Bassell,et al.  Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome , 2015, The Journal of Neuroscience.

[205]  G M Edelman,et al.  Internal initiation of translation of five dendritically localized neuronal mRNAs , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[206]  Charles F Stevens,et al.  Synaptic plasticity , 1998, Current Biology.

[207]  J. Simon Wiegert,et al.  The fate of hippocampal synapses depends on the sequence of plasticity-inducing events , 2018, bioRxiv.

[208]  Michele Pignatelli,et al.  Engram cells retain memory under retrograde amnesia , 2015, Science.

[209]  J. Medina,et al.  Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc , 2018, Front. Behav. Neurosci..

[210]  L. Looger,et al.  Chemical and Genetic Engineering of Selective Ion Channel–Ligand Interactions , 2011, Science.

[211]  Michael Z. Lin,et al.  Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo , 2019, Nature Methods.

[212]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[213]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[214]  S. Raghavachari,et al.  Mechanisms of CaMKII action in long-term potentiation , 2012, Nature Reviews Neuroscience.

[215]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[216]  A. Gordus,et al.  Sensitive red protein calcium indicators for imaging neural activity , 2016, bioRxiv.

[217]  R. Nicoll,et al.  Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. , 2016, Annual review of physiology.

[218]  Richard L. Huganir,et al.  Rapid Dispersion of SynGAP from Synaptic Spines Triggers AMPA Receptor Insertion and Spine Enlargement during LTP , 2015, Neuron.

[219]  S. Tonegawa,et al.  Memory Engram Cells Have Come of Age , 2015, Neuron.

[220]  Yadin Dudai,et al.  The Engram Revisited On the Elusive Permanence of Memory , 2010 .

[221]  Elly Nedivi,et al.  Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo , 2016, Neuron.

[222]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[223]  Yudong Gao,et al.  Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering , 2019, Neuron.

[224]  M. Moloney Excitatory Amino Acids. , 2010 .

[225]  V. Chevaleyre,et al.  Modulating excitation through plasticity at inhibitory synapses , 2014, Front. Cell. Neurosci..

[226]  Carol A Barnes,et al.  Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites , 1995, Neuron.

[227]  T. Bliss,et al.  Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories , 2006, Neuron.

[228]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[229]  Richard E. Brown,et al.  The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition , 2018, Front. Syst. Neurosci..

[230]  H. Eichenbaum Still searching for the engram , 2016, Learning & Behavior.

[231]  Christian Lohmann,et al.  Spontaneous Activity Drives Local Synaptic Plasticity In Vivo , 2015, Neuron.

[232]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.