High-speed highly sensitive CMOS image sensors

The demand on high-speed CMOS image sensor (CIS) becomes higher in recent years. They are important for a wide range of applications, such as radiography, particle detection, sports, mechanical diagnosis, robot guidance, security surveillance and bio-medical research. High sensitivity is required in high-speed CISs as the exposure time is short. CISs with conventional pixels have low sensitivities due to the large photodiode capacitor. Image lag is evident with the traditional lateral charge transfer gate especially under low illumination. Also, the column parallel analog-to-digital converter (ADC) arrays in existing CISs have either low resolution or large area. In this thesis, two CISs with capacitive transimpedance amplifier (CTIA) pixels are developed to enhance the imaging speed and sensitivity simultaneously. Novel columnparallel successive approximation register (SAR) ADCs are designed to reduce the area of column quantization circuits significantly. A 1500 fps 256×256 CIS is designed in a 0.18-μm mixed-signal CMOS process for micro-CT. A tiny metal-oxide-metal (MOM) integration capacitor (CINT) is used in the CTIA pixel to achieve the high sensitivity. To compensate the CINT mismatches across the pixel array, an on-chip calibration scheme is developed. After calibration, a low fixed-pattern noise (FPN) of 0.52% can be achieved. With the white light illumination, the sensitivity is measured to be 68.5V/lux·s, which is higher than the previous highest CIS by 240%. The CIS also has low temporal noise (13.6erms). Its dynamic range is 56.5 dB. Minimum-size metalinsulator-metal (MIM) unit capacitors are used to implement the capacitor array of the SAR ADC. A digital calibration method based on dithering is devised to compensate the capacitor mismatches without any analog overhead. As a result, the size of a single SAR ADC is only

[1]  Jiang Hsieh,et al.  Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Fourth Edition , 2022 .

[2]  T.S. Perry,et al.  A 64 $\times$ 64-Pixel CMOS Test Chip for the Development of Large-Format Ultra-High-Speed Snapshot Imagers , 2008, IEEE Journal of Solid-State Circuits.

[3]  Eric R. Fossum,et al.  Digital camera system on a chip , 1998, IEEE Micro.

[4]  George Jie Yuan,et al.  A Quantum-Limited Highly Linear Monolithic CMOS Detector for Computed Tomography , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Jun Ohta,et al.  Smart CMOS Image Sensors and Applications , 2007 .

[6]  M. Wany,et al.  CMOS image sensor with NMOS-only global shutter and enhanced responsivity , 2003 .

[7]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[8]  Tsukamoto Sanroku,et al.  A 10b 50MS/s 820uW SAR ADC with on-chip digital calibration , 2010 .

[9]  Kartikeya Murari,et al.  A CMOS In-Pixel CTIA High-Sensitivity Fluorescence Imager , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[10]  Gunhee Han,et al.  A High-Speed CMOS Image Sensor With Column-Parallel Two-Step Single-Slope ADCs , 2009 .

[11]  C. Lyden,et al.  Parametric yield prediction of complex, mixed-signal IC's , 1995 .

[12]  M. Furuta,et al.  A High-Speed, High-Sensitivity Digital CMOS Image Sensor With a Global Shutter and 12-bit Column-Parallel Cyclic A/D Converters , 2007, IEEE Journal of Solid-State Circuits.

[13]  임천석 Modern Optical Engineering: 3rd ed. (저자 : Warren J. Smith) , 2007 .

[14]  Isao Takayanagi,et al.  A 1-inch optical format, 14.2M-pixel, 80fps CMOS image sensor with a pipelined pixel reset and readout operation , 2013, 2013 Symposium on VLSI Circuits.

[15]  E. Ritman Micro-computed tomography-current status and developments. , 2004, Annual review of biomedical engineering.

[16]  Satoru Adachi,et al.  A 200-µV/e- CMOS Image Sensor With 100-ke- Full Well Capacity , 2008, IEEE J. Solid State Circuits.

[17]  Alexander I. Krymski,et al.  A 9-V/Lux-s 5000-frames/s 512/spl times/512 CMOS sensor , 2003 .

[18]  M.F. Snoeij,et al.  A CMOS Imager With Column-Level ADC Using Dynamic Column Fixed-Pattern Noise Reduction , 2006, IEEE Journal of Solid-State Circuits.

[19]  H. Eltoukhy,et al.  A 0.18-/spl mu/m CMOS bioluminescence detection lab-on-chip , 2006, IEEE Journal of Solid-State Circuits.

[20]  A.P. Chandrakasan,et al.  An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes , 2007, IEEE Journal of Solid-State Circuits.

[21]  H. Miyazaki,et al.  Development and performance evaluation of the first model of 4D CT-scanner , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[22]  Tai-Cheng Lee,et al.  A 6-b 1.3Gs/s A/D Converter with C-2C Switch-Capacitor Technique , 2006, 2006 International Symposium on VLSI Design, Automation and Test.

[23]  Shoji Kawahito,et al.  A 2.7e- temporal noise 99.7% shutter efficiency 92dB dynamic range CMOS image sensor with dual global shutter pixels , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[24]  Boris Murmann,et al.  A 96-channel full data rate direct neural interface in 0.13µm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[25]  G. Entine,et al.  A High-Speed Functional MicroCT Detector for Small Animal Studies , 2004, IEEE Transactions on Nuclear Science.

[26]  Shigetoshi Sugawa,et al.  A sensitivity and linearity improvement of a 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor , 2005, VLSIC 2005.

[27]  Michael P. Flynn,et al.  A 12b 11MS/s successive approximation ADC with two comparators in 0.13μm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[28]  Behzad Razavi,et al.  Principles of Data Conversion System Design , 1994 .

[29]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[30]  Chung-Ming Huang,et al.  A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[31]  A. Krymski,et al.  CMOS Image Sensor with integrated 4Gb/s Camera Link Transmitter , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[32]  Ian Galton,et al.  A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[33]  Shin Kikuchi,et al.  A 300mm wafer-size CMOS image sensor with in-pixel voltage-gain amplifier and column-level differential readout circuitry , 2011, 2011 IEEE International Solid-State Circuits Conference.

[34]  Wenbo Liu,et al.  A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[35]  Shoji Kawahito,et al.  A 33Mpixel 120fps CMOS image sensor using 12b column-parallel pipelined cyclic ADCs , 2012, 2012 IEEE International Solid-State Circuits Conference.

[36]  P. Noble,et al.  Self-scanned silicon image detector arrays , 1968 .

[37]  George Jie Yuan,et al.  A 1500 fps Highly Sensitive 256 , ˟, 256 CMOS Imaging Sensor With In-Pixel Calibration , 2012, IEEE J. Solid State Circuits.

[38]  T.S. Fiez,et al.  Simulation and measurement of supply and substrate noise in mixed-signal ICs , 2005, IEEE Journal of Solid-State Circuits.

[39]  Sanroku Tsukamoto,et al.  Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC , 2010 .

[40]  Fukushima Noriyuki,et al.  A 17.7Mpixel 120fps CMOS Image Sensor with 34.8Gb/s Readout , 2011 .

[41]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[42]  Stuart Anderson,et al.  On-Chip CMOS Sensors for VLSI Imaging Systems , 1991, Conference on Advanced Research in VLSI.

[43]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[44]  A. Matsuzawa,et al.  A 0.05-mm2 110-μW 10-b self-calibrating successive approximation ADC core in 0.18-μm CMOS , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[45]  Eric R. Fossum,et al.  Active pixel sensors: are CCDs dinosaurs? , 1993, Electronic Imaging.

[46]  M. Paindavoine,et al.  A 10 000 fps CMOS Sensor With Massively Parallel Image Processing , 2008, IEEE Journal of Solid-State Circuits.

[47]  Hiroshi Takahashi,et al.  A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[48]  K. Isobe,et al.  A High-Speed Low-Noise CMOS Image Sensor With 13-b Column-Parallel Single-Ended Cyclic ADCs , 2009, IEEE Transactions on Electron Devices.

[49]  Franco Maloberti,et al.  A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[50]  Bing Liu,et al.  An Activity-Triggered 95.3 dB DR $-$75.6 dB THD CMOS Imaging Sensor With Digital Calibration , 2009, IEEE Journal of Solid-State Circuits.

[51]  S. Gambini,et al.  Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[52]  Amine Bermak,et al.  A Low-Power Pilot-DAC Based Column Parallel 8b SAR ADC With Forward Error Correction for CMOS Image Sensors , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[53]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[54]  Bruce G. Batchelor Machine vision handbook , 2012 .

[55]  Zhan Ma,et al.  Smart Cameras , 2020, Encyclopedia of Biometrics.

[56]  E. Fossum,et al.  CMOS active pixel image sensors for highly integrated imaging systems , 1997, IEEE J. Solid State Circuits.

[57]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[58]  Bang-Sup Song,et al.  A 15-bit Linear 20-MS/s Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering , 2008, IEEE Journal of Solid-State Circuits.

[59]  K. Arai,et al.  No image lag photodiode structure in the interline CCD image sensor , 1982, 1982 International Electron Devices Meeting.

[60]  S. Decker,et al.  A 256/spl times/256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[61]  Xinqiao Liu,et al.  A 10000 frames/s CMOS digital pixel sensor , 2001, IEEE J. Solid State Circuits.

[62]  Chung-Ming Huang,et al.  A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[63]  A. Suzuki,et al.  High-Speed Digital Double Sampling with Analog CDS on Column Parallel ADC Architecture for Low-Noise Active Pixel Sensor , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[64]  P. Magnan Detection of visible photons in CCD and CMOS: A comparative view , 2003 .

[65]  B.J. Hosticka,et al.  A CMOS photodiode array with in-pixel data acquisition system for computed tomography , 2004, IEEE Journal of Solid-State Circuits.

[66]  Minho Kwon,et al.  A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel $\Delta \Sigma$ ADC Architecture , 2011, IEEE Journal of Solid-State Circuits.