Colloidal quantum dot solar cells

Solar cells based on solution-processed semiconductor nanoparticles — colloidal quantum dots — have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

[1]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[3]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[4]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[5]  Illan J. Kramer,et al.  Solar cells using quantum funnels. , 2011, Nano letters.

[6]  Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. , 2011, ACS applied materials & interfaces.

[7]  Edward H Sargent,et al.  Colloidal quantum dot photovoltaics: a path forward. , 2011, ACS nano.

[8]  Edward H. Sargent,et al.  Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution , 2007 .

[9]  A Paul Alivisatos,et al.  Photovoltaic performance of ultrasmall PbSe quantum dots. , 2011, ACS nano.

[10]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[11]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[12]  Richard R. King,et al.  Multijunction cells: Record breakers , 2008 .

[13]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[14]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[15]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[16]  Edward H. Sargent,et al.  Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts , 2010 .

[17]  Ghada I. Koleilat,et al.  Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.

[18]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[19]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[20]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[21]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[22]  M. Bawendi,et al.  Synthesis and structural characterization of II–VI semiconductor nanocrystallites (quantum dots) , 1993 .

[23]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[24]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[25]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[26]  Edward H. Sargent,et al.  Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion , 2008 .