Counterexample to an Extension of the Hanani-Tutte Theorem on the Surface of Genus 4

We find a graph of genus $5$ and its drawing on the orientable surface of genus $4$ with every pair of independent edges crossing an even number of times. This shows that the strong Hanani-Tutte theorem cannot be extended to the orientable surface of genus $4$. As a base step in the construction we use a counterexample to an extension of the unified Hanani-Tutte theorem on the torus.

[1]  Marcus Schaefer,et al.  Block Additivity of ℤ2-Embeddings , 2013, GD.

[2]  Jan Kyncl,et al.  Hanani-Tutte for approximating maps of graphs , 2017, SoCG.

[3]  Dömötör Pálvölgyi,et al.  Clustered Planarity Testing Revisited , 2013, Electron. J. Comb..

[4]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[5]  Paul D. Seymour,et al.  Graph minors. VIII. A kuratowski theorem for general surfaces , 1990, J. Comb. Theory, Ser. B.

[6]  Jan Kyncl,et al.  The ℤ2-genus of Kuratowski minors , 2018, Symposium on Computational Geometry.

[7]  Marcus Schaefer,et al.  Block Additivity of Z2-Embeddings , 2013 .

[8]  Michael J. Pelsmajer,et al.  Journal of Graph Algorithms and Applications Adjacent Crossings Do Matter , 2022 .

[9]  Marcus Schaefer,et al.  Hanani-Tutte and Related Results , 2013 .

[10]  J. F. Geelena,et al.  Embedding grids in surfaces , 2004 .

[11]  M. Schaefer The Graph Crossing Number and its Variants: A Survey , 2013 .

[12]  Bojan Mohar,et al.  Combinatorial Local Planarity and the Width of Graph Embeddings , 1992, Canadian Journal of Mathematics.

[13]  B. Mohar,et al.  Graph Minors , 2009 .

[14]  Ch. Chojnacki,et al.  Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .

[15]  Dömötör Pálvölgyi,et al.  Unified Hanani-Tutte Theorem , 2016, Electron. J. Comb..

[16]  Martin Tancer,et al.  A Direct Proof of the Strong Hanani-Tutte Theorem on the Projective Plane , 2016, J. Graph Algorithms Appl..

[17]  László Lovász,et al.  On Conway's Thrackle Conjecture , 1995, SCG '95.

[18]  Michael J. Pelsmajer,et al.  Removing even crossings , 2007, J. Comb. Theory, Ser. B.

[19]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[20]  Grant Cairns,et al.  Bounds for Generalized Thrackles , 2000, Discret. Comput. Geom..

[21]  Jj Anos Pach Which Crossing Number Is It Anyway? , 1998 .

[22]  Carsten Thomassen A Simpler Proof of the Excluded Minor Theorem for Higher Surfaces , 1997, J. Comb. Theory, Ser. B.

[23]  F. Harary,et al.  Additivity of the genus of a graph , 1962 .

[24]  Michael J. Pelsmajer,et al.  Removing even crossings on surfaces , 2009, Eur. J. Comb..

[25]  W. T. Tutte Toward a theory of crossing numbers , 1970 .

[26]  Michael J. Pelsmajer,et al.  Strong Hanani--Tutte on the Projective Plane , 2009, SIAM J. Discret. Math..