Superradiance in stars: non-equilibrium approach to damping of fields in stellar media

Superradiance in black holes is well-understood but a general treatment for superradiance in stars has until now been lacking. This is surprising given the ease with which we can observe isolated neutron stars and the array of signatures which would result from stellar superradiance. In this work, we present the first systematic pipeline for computing superradiance rates in rotating stars. Our method can be used with any Lagrangian describing the interaction between the superradiant field and the constituents of the star. Our scheme falls into two parts: firstly we show how field theory at finite density can be used to express the absorption of long wavelength modes into the star in terms of microphsyical scattering processes. This allows us to derive a damped equation of motion for the bosonic field. We then feed this into an effective theory for long wavelengths (the so-called worldline formalism) to describe the amplification of superradiant modes of arbitrary multipole moment for a rapidly rotating star. Our method places stellar superradiance on a firm theoretical footing and allows the calculation of the superradiance rate arising from any interaction between a bosonic field and stellar matter.

[1]  S. Vitale,et al.  Dark Matter In Extreme Astrophysical Environments , 2022, 2203.07984.

[2]  C. Weniger,et al.  Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey. , 2022, Physical review letters.

[3]  E. Berti,et al.  Superradiance in massive vector fields with spatially varying mass , 2022, Physical Review D.

[4]  J. Darling,et al.  Towards robust constraints on axion dark matter using PSR J1745-2900 , 2021, Physical Review D.

[5]  M. Drewes,et al.  Oscillating scalar dissipating in a medium , 2021, Journal of High Energy Physics.

[6]  M. C. Marsh,et al.  Axion-photon conversion in strongly magnetised plasmas , 2021, Journal of Cosmology and Astroparticle Physics.

[7]  R. Battye,et al.  Radio line properties of axion dark matter conversion in neutron stars , 2021, Journal of High Energy Physics.

[8]  C. Weniger,et al.  Axion-photon conversion in neutron star magnetospheres: The role of the plasma in the Goldreich-Julian model , 2021, Physical Review D.

[9]  D. Blas,et al.  Quenching mechanisms of photon superradiance , 2020, Physical Review D.

[10]  J. Darling New Limits on Axionic Dark Matter from the Magnetar PSR J1745-2900 , 2020, The Astrophysical Journal.

[11]  J. Darling Search for Axionic Dark Matter Using the Magnetar PSR J1745-2900. , 2020, Physical review letters.

[12]  S. P. Harris,et al.  Transport in neutron star mergers , 2020, 2005.09618.

[13]  K. Sinha,et al.  Axions in neutron star mergers , 2020, Journal of Cosmology and Astroparticle Physics.

[14]  B. Garbrecht,et al.  Absence of $CP$ violation in the strong interactions , 2020, 2001.07152.

[15]  M. Chianese,et al.  Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis , 2019, Physical Review D.

[16]  R. Battye,et al.  Dark matter axion detection in the radio/mm waveband , 2019, 1910.11907.

[17]  Q. Yuan,et al.  Probing Axions with Event Horizon Telescope Polarimetric Measurements. , 2019, Physical review letters.

[18]  T. Dietrich,et al.  Cooling binary neutron star remnants via nucleon-nucleon-axion bremsstrahlung , 2019, Physical Review D.

[19]  S. Rajendran,et al.  Particle Probes with Superradiant Pulsars , 2019, 1908.10440.

[20]  Francesca V. Day,et al.  Axion superradiance in rotating neutron stars , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  D. Baumann,et al.  Probing ultralight bosons with binary black holes , 2018, Physical Review D.

[22]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[23]  B. Garbrecht,et al.  Axion configurations around pulsars , 2018, Journal of Cosmology and Astroparticle Physics.

[24]  B. Safdi,et al.  Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres. , 2018, Physical review letters.

[25]  K. Kadota,et al.  Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources , 2018, Physical Review D.

[26]  V. Cardoso,et al.  Penrose process, superradiance, and ergoregion instabilities , 2018, 1803.08060.

[27]  V. Cardoso,et al.  Constraining the mass of dark photons and axion-like particles through black-hole superradiance , 2018, 1801.01420.

[28]  C. Herdeiro,et al.  Can black hole superradiance be induced by galactic plasmas , 2017, 1701.02034.

[29]  E. Berti,et al.  Gravitational wave searches for ultralight bosons with LIGO and LISA , 2017, 1706.06311.

[30]  E. Berti,et al.  Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. , 2017, Physical review letters.

[31]  V. Cardoso,et al.  Superradiance in rotating stars and pulsar-timing constraints on dark photons , 2017, 1704.06151.

[32]  R. Lasenby,et al.  Black hole superradiance signatures of ultralight vectors , 2017, 1704.05081.

[33]  S. Endlich,et al.  A modern approach to superradiance , 2016, 1609.06723.

[34]  G. Eskin Superradiance initiated inside the ergoregion , 2015, 1509.03197.

[35]  V. Cardoso,et al.  Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics , 2015 .

[36]  V. Cardoso,et al.  Superradiance in stars , 2015, 1505.05509.

[37]  M. Drewes,et al.  Effective action for cosmological scalar fields at finite temperature , 2015, 1504.04444.

[38]  A. Arvanitaki,et al.  Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.

[39]  F. Riva,et al.  (Re-)inventing the relativistic wheel: gravity, cosets, and spinning objects , 2014, 1405.7384.

[40]  H. Kodama,et al.  Gravitational radiation from an axion cloud around a black hole: Superradiant phase , 2013, 1312.2326.

[41]  A. Saa,et al.  Superradiance without event horizons in general relativity , 2013, 1306.3137.

[42]  E. Berti,et al.  Black-hole bombs and photon-mass bounds. , 2012, Physical review letters.

[43]  H. Kodama,et al.  Bosenova Collapse of Axion Cloud around a Rotating Black Hole , 2012, 1203.5070.

[44]  A. Arvanitaki,et al.  Exploring the String Axiverse with Precision Black Hole Physics , 2010, 1004.3558.

[45]  A. J. Penner,et al.  Generalized superradiant scattering , 2009, 0909.2317.

[46]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[47]  E. Calzetta,et al.  Nonequilibrium quantum field theory , 2008 .

[48]  S. Popov,et al.  Conversion of dark matter axions to photons in magnetospheres of neutron stars , 2007, 0711.1264.

[49]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[50]  J. Berges Introduction to Nonequilibrium Quantum Field Theory , 2004, hep-ph/0409233.

[51]  T. Prokopec,et al.  TRANSPORT EQUATIONS FOR CHIRAL FERMIONS TO ORDER ħ AND ELECTROWEAK BARYOGENESIS , 2004, hep-ph/0406140.

[52]  T. Prokopec,et al.  Transport equations for chiral fermions to order \hbar and electroweak baryogenesis: Part I , 2003, hep-ph/0312110.

[53]  E. Iancu,et al.  The quark-gluon plasma: collective dynamics and hard thermal loops , 2001, hep-ph/0101103.

[54]  N. Iwamoto Nucleon-nucleon bremsstrahlung of axions and pseudoscalar particles from neutron-star matter , 2001 .

[55]  J. Bekenstein,et al.  The many faces of superradiance , 1998, gr-qc/9803033.

[56]  G. Raffelt Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles , 1996 .

[57]  N. Ishizuka,et al.  Axion and Dilaton Emissivity from Nascent Neutron Stars , 1990 .

[58]  Turner,et al.  Axions and SN 1987A: Axion trapping. , 1990, Physical review. D, Particles and fields.

[59]  Kim,et al.  Invisible-axion emissions from SN 1987A. , 1989, Physical review letters.

[60]  Brinkmann,et al.  Numerical rates for nucleon-nucleon, axion bremsstrahlung. , 1988, Physical Review D, Particles and fields.

[61]  Hu,et al.  Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. , 1988, Physical review. D, Particles and fields.

[62]  N. Iwamoto Axion Emission from Neutron Stars , 1984 .

[63]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[64]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[65]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[66]  A. Zhitnitsky On Possible Suppression of the Axion Hadron Interactions. (In Russian) , 1980 .

[67]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[68]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[69]  S. Weinberg A new light boson , 1978 .

[70]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[71]  J. Cornwall,et al.  Effective Action for Composite Operators , 1974 .

[72]  Y. Zel’dovich Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body , 1972 .

[73]  Y. Zel’dovich Generation of Waves by a Rotating Body , 1971 .

[74]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[75]  J. Schwinger Brownian Motion of a Quantum Oscillator , 1961 .