On the Circular Area Signature for Graphs

The representation of curves by integral invariant signatures is an important step in shape recognition and classification. Integral invariants are preferred over their differential counterparts due to their robustness with respect to noise. However, in contrast to differential invariants of curves, it is currently unknown whether integral signatures offer unique representations of curves. In this article, we prove some results on the uniqueness of the circular area signature. In particular, we study the case for graphs of periodic functions. We show that the circular area signature is unique if taken with respect to parametrization by the $x$-axis. Furthermore, we prove that the true circular area signature (parametrized by arclength) is unique in a neighborhood of constant functions. Finally, we show uniqueness in the special case that the functions of interest agree on an interval of width $2r$.

[1]  Martin Bauer,et al.  Local Uniqueness of the Circular Integral Invariant , 2011 .

[2]  D. Struik Lectures on classical differential geometry , 1951 .

[3]  Ronald-Bryan O. Alferez,et al.  Geometric and Illumination Invariants for Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[7]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[8]  Helmut Pottmann,et al.  Reassembling fractured objects by geometric matching , 2006, ACM Trans. Graph..

[9]  Thomas H. Reiss,et al.  Recognizing Planar Objects Using Invariant Image Features , 1993, Lecture Notes in Computer Science.

[10]  Dominique Hulin,et al.  Mean Curvature and Asymptotic Volume of Small Balls , 2003, Am. Math. Mon..

[11]  L. Gool,et al.  Semi-differential invariants , 1992 .

[12]  Jan-Olof Eklundh,et al.  Shape Representation by Multiscale Contour Approximation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[14]  Luc Van Gool,et al.  Matching of 3-D curves using semi-differential invariants , 1995, Proceedings of IEEE International Conference on Computer Vision.

[15]  H. Pottmann,et al.  Inverse Problems of Integral Invariants and Shape Signatures , 2007 .

[16]  Shi-Min Hu,et al.  Robust principal curvatures on multiple scales , 2006, SGP '06.

[17]  Stan Z. Li Shape Matching Based on Invariants , 2007 .

[18]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[19]  Otmar Scherzer,et al.  Identifiability and reconstruction of shapes from integral invariants , 2008 .

[20]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .